数学建模论文物资调问题
精品文档---下载后可任意编辑 摘要 “运输调度”数学模型是通过运输车运输路线的确定以及运输车调配方案的确定来使运输的花费最小。本文首先分析了物资调度中运费、载重量及各站点需求量间相互关系。而后,紧抓住总运营费用最小这个目标,找出最短路径,最后完成了每辆运输车的最优调度具体方案。 问题一:根据题目及实际经验得出运输车运输物资与其载重量及其行驶的路程成正比例关系,又运输的价格一定,再结合题目给出的条件“运输车重载运费2元/吨公里”,其重载运费的单位“元/吨公里”给我们的启发。于是结合题目给定的表,我们将两个决策变量(载重量,路程)化零为整为一个花费因素来考虑,即从经济的角度来考虑。同理我们将多辆车也化零为整,即用一辆“超大运输车”来运输物资。根据这样从经济的角度来考虑,于是我们将需求点的需求量乘入需求点的坐标得到一个新的表,即花费经济表,我们再运用数学软件作出一个新的坐标,这样可以得到一个花费坐标。于是根据从经济花费最少的角度,根据我们所掌握的最短路径及算法再结合数学软件,可求得经济花费坐标上的最短路径。具体求法上,采纳了算法结合“最优化原理”,先保证每个站点的运营费用最小,从而找出所有站点的总运营费用最小,即找出了一条总费用最低的最短路径。用我们的“超大运输车”“化整为零”的思想,将该路线分为八条路径。同时也将超大车进行分解,于是派八辆运输车向29个需求点运送物资。同样的道理我们也将运输车运送物资从经济的角度看,即将运量乘以其速度,又因运输的价格一定,因此便可以将运输车在整体上从经济考虑。于是便可以将整体从经济上来考虑。将运输最小花费转化从经济方面来考虑比较合理。由此可求解出运输车全程的最低费用: 结合各约束条件求得最低费用为1980.16元。 问题二:由题目知运输车的载重量不同,但由于我们从整体的经济上来考虑运输物资的花费最少问题,因此花费坐标的最短路径仍然不变。因此结合运输车工作时间的这个因素,我们仍用问题一的思路,运用“化零为整”,“化整为零”的思想来考虑第二问。根据这样的的思路我们制定了八条路线,派了七辆运输车来运送物资。同样在整体上对问题从经济上来考虑比较合理。 结合各约束条件求得最低费用为1969.66元,需要7辆车 关键词:物资调度 最短路线 最优化原理 Dijkstra算法 0-1规划 一、问题重述 1.1. 背景资料与条件 某城区有29个物资需求点,需求点的地理坐标和每天物资的需求量见如下表一。(表一为原表截取的一部分,原表其余部分见附录一)。每天凌晨都要从仓库(第30号站点)出发将物资运至每个需求点。现有已知一种运输车,载重 6吨,运输车平均速度为40公里/小时,每台车每日工作 4小时,每个需求点需要用10分钟的时间下货。公里;并且街道方向均平行于坐标轴。 29个需求点物资需求量及地理坐标 站点编号 需求量T 坐标(km) 站点编号 需求量T 坐标(km) x y x y 1 3 2 16 2 16 2 1 5 17 6 18 3 5 4 18 11 17 4 4 7 19 15 12 5 0 8 20 19 9 6 3 11 21 22 5 下图为29个需求点的地理坐标示意图: 图一:各需求点地理坐标图 问题一:在运输车的载重固定为6吨的情况下,为使运输费用最小,怎样调动运输车(包括运输车的数量,每台车的运营路线及费用)。 问题二:在运输车的载重分为三类(四吨,六吨,八吨)的情况下,为使运输费用最小,怎样调动运输车(包括运输车的数量,每台车的运营路线及费用)。 二、问题分析 2.1.问题的重要性分析(社会背景) 现代社会经济高速进展,各种信息物资沟通频繁,特别是当今,对如何优化物资分配,降低经济成本,时间成本的要求十分迫切。讨论在使费用最小情况下的物资调度问题,对于满足各地物资需求,优化资源配置,促进经济社会进展具有十分重要的意义。 . 有关方面在这个问题上做过的讨论 [2]物流配送车辆优化调度问题最早是由学者 Dantzig和 Ramser 于 1959 年首次提出的,国外一般称之为vehicle routing problem或vehicle scheduling problem.一般以为 ,不考虑时间要求 ,仅根据空间位置安排线路时称为车辆线路安排问题VRP ;考虑时间要求 ,安排线路时称为车辆调度问题VSP。目前针对车辆优化调度问题的求解算法可以说是相当丰富,根据对这些算法本质的分类讨论 ,基本上可以分为精确算法和启发式算法两大类. 精确算法指可求出最优解的算法 ,主要有分枝定界法、 割平面法、 网络流算法和动态规划法.精确算法的计算量一般随问题规模的增大而呈指数增长 ,所以多用于规模较小的问题。启发式算法是指一种基于直观或经验构造的算法 ,目标是在可接受的花费(计算时间、 占用空间等)下得出待解决问题的满意解 ,而不是最优解.考虑到VRP是强NP难题 ,而启发式方法能够比较快地得到满意解 ,这对解决NP难题来说有着不可估量的作用.因此大部分文献中专家们主要是在构造各种高质量的启发式算法。 仓库物资由运输车进行调运。每辆车的工作时间不超过4小时,并且每辆车的载重不能超过6吨。若调运的需求地点已经明确,为了使运费最小,必须用最少的车在允许的工作时间内把需要运送的物资运送到需求地点,因此选择什么样的调运路线和派遣多少车辆显得尤为重要。本论文试图从最短路程和最小花费的角度,建立起满足调运费用最少且调用车辆最少的数学模型,求出仓库派遣的车辆的数量和运送路线。 问题一的分析: .“化零为整”,求最短路 本题要求在使总运输费用最小的情况下,安排这29个运输点的车辆调度方案。 先考虑运输车运往各个需求地的总运输最小费用。假设从仓库(0,0)点开始,车先运往地,此时运费最小;再运往地,保证从地到地的总运费也是最小的;车再运往地,保证此时地与地的运费仍是最小;即若每两地之间的运输费用都是最小的,那么将所有联通的两个需求地的运费求和仍是最少的运费。即假设为地和地的最小运输费用,为0-1变量,即两地与若联通,则为1,若两地不连通,则为0。在运输车运往个需求点的过程中,总运输最小费用为: 针对地,根据实际情况,其运输费用与该地的需求量及地到地的距离均成正比,故将地的需求量和地理位置合成一个新量(),仓库(0,0)到各个需求点的最短路径即为总运输费用最小的路径。 求总最小运输费用 在运输车从各个需求点回到仓库的过程中,由于最短路已经确定,因而返回时按每条运输路线上终止需求点到仓库的最短路径,就可求出整个运输车运送物资与返回全过程的最小费用。 即在运输车往返需求点的全过程中的最小费用为 .化整为零,调度车辆,分配每辆车运输线路 根据本文前部分的求解,能求出从仓库到29个需求点的最短物资调度线路,则调度车辆要考虑的因素是使总运费最小及使用的车辆尽量少。因为在实际物资调度过程中,派出一辆车的固定费用远高于一辆车的行驶费用,因此调度的车辆尽可能少也是优