初中数学中考八大题型典中典专题复习八动态变化问题
精品文档---下载后可任意编辑 题型概述 动态型问题一般是指以几何知识和图形为背景,渗透运动变化观点的一类试题,常见的运动对象有点动、线动和面动;其运动形式而言就是平移、旋转、翻折和滚动等。 动态型试题其特点是集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活,多变,动中有静,动静结合,能够在运动变化中进展同学们的空间想象能力。 解答动态型试题的策略是:(1)动中求静,即在运动变化中探究问题中的不变性;(2)动静互化,抓住静的瞬间。找到导致图形或者变化规律发生改变的特别时刻,同时在运动变化的过程中寻找不变性及其变化规律。 题型例析 类型1:动点问题 (1)因动点产生的相似三角形问题:属于动态几何问题,因动点而产生的相似三角形,充分利用相似三角形的判定、性质及其多边形的知识点,结合分类讨论等多种数学思想,将“动”中某些特别时刻看成“静”,并在其静态下把问题解决。 【例题】(2024•酒泉第10题 3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( ) A. B.C.D. 考点:动点问题的函数图象. 分析:证明△BPE∽△CDP,根据相似三角形的对应边的比相等求得y与x的函数关系式,根据函数的性质即可作出推断. 解答:∵∠CPD=∠FPD,∠BPE=∠FPE, 又∵∠CPD+∠FPD+∠BPE+∠FPE=180°, ∴∠CPD+∠BPE=90°, 又∵直角△BPE中,∠BPE+∠BEP=90°, ∴∠BEP=∠CPD, 又∵∠B=∠C, ∴△BPE∽△CDP, ∴,即,则y=﹣x2+,y是x的二次函数,且开口向下. 故选C. 点评:本题考查了动点问题的函数图象,求函数的解析式,就是把自变量当作已知数值,然后求函数变量y的值,即求线段长的问题,正确证明△BPE∽△CDP是关键. 【变式练习】 (2024•内蒙古呼伦贝尔兴安盟,第12题3分)如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是( ) A.﹣1B.C.1D. 考点:相似三角形的判定与性质;平移的性质. 专题:压轴题. 分析:利用相似三角形面积的比等于相似比的平方先求出A′B,再求AA′就可以了. 解答:解:设BC与A′C′交于点E, 由平移的性质知,AC∥A′C′ ∴△BEA′∽△BCA ∴S△BEA′:S△BCA=A′B2:AB2=1:2 ∵AB= ∴A′B=1 ∴AA′=AB﹣A′B=﹣1 故选A. 点评:本题利用了相似三角形的判定和性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. (2)因动点产生的特别三角形问题:这类问题主要产生等腰三角形和直角三角形,无论是哪种三角形,都需要进行分类讨论(要注意关注这方面的讨论),等腰三角形可按哪条是底边(或者哪个角是底角)等作为分类标准,直角三角形则按哪条边是斜边(或者哪个角是直角)作为分类标准。 【例题】(2024•山东威海,第 11题3分)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是( ) A. B.C.D. 考点:动点问题的函数图象. 分析:根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDC是等边三角形,从而求得ED=DC=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判定. 解答::∵△ABC是等边三角形, ∴∠B=60°, ∵DE∥AB, ∴∠EDC=∠B=60°, ∵EF⊥DE, ∴∠DEF=90°, ∴∠F=90°﹣∠EDC=30°; ∵∠ACB=60°,∠EDC=60°, ∴△EDC是等边三角形. ∴ED=DC=2﹣x, ∵∠DEF=90°,∠F=30°, ∴EF=ED=(2﹣x). ∴y=ED•EF=(2﹣x)•(2﹣x), 即y=(x﹣2)2,(x<2), 故选A. 点评:本题考查了等边三角形的判定与性质,以及直角三角形的性质,特别角的三角函数、三角形的面积等. 【变式练习】 (2024•山东威海,第25题12分)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣). (1)求抛物线l2的函数表达式; (2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标; (3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值. 考点:二次函数综合题.. 分析:(1)由对称轴可求得b,可求得l1的解析式,令y=0可求得A点坐标,再利用待定系数法可求得l2的表达式; (2)设P点坐标为(1,y),由勾股定理可表示出PC2和PA2,由条件可得到关于y的方程可求得y,可求得P点坐标; (3)可分别设出M、N的坐标,可表示出MN,再根据函数的性质可求得MN的最大值 解答:(1)∵抛物线l1:y=﹣x2+bx+3的对称轴为x=1, ∴﹣=1,解得b=2, ∴抛物线l1的解析式为y=﹣x2+2x+3, 令y=0,可得﹣x2+2x+3=0,解得x=﹣1或x=3, ∴A点坐标为(﹣1,0), ∵抛物线l2经过点A、E两点, ∴可设抛物线l2解析式为y=a(x+1)(x﹣5), 又∵抛物线l2交y轴于点D(0,﹣), ∴﹣=﹣5a,解得a=, ∴y=(x+1)(x﹣5)=x2﹣2x﹣, ∴抛物线l2的函数表达式为y=x2﹣2x﹣; (2)设P点坐标为(1,y),由(1)可得C点坐标为(0,3), ∴PC2=12+(y﹣3)2=y2﹣6y+10,PA2=[1﹣(﹣1)]2+y2=y2+4, ∵PC=PA, ∴y2﹣6y+10=y2+4,解得y=1, ∴P点坐标为(1,1); (3)由题意可设M(x,x2﹣2x﹣), ∵MN∥y轴, ∴N(x,﹣x2+2x+3),x2﹣2x﹣ 令﹣x2+2x+3=x2﹣2x﹣,可解得x=﹣1或x=, ①当﹣1<x≤时,MN=(﹣x2+2x+3)﹣(x2﹣2x﹣)=﹣x2+4x+=﹣(x﹣)2+, 显然﹣1<≤,∴当x=时,MN有最大值; ②当<x≤5时,MN=(x2﹣2x﹣)﹣(﹣x2+2x+3) =x2﹣4x﹣=(x﹣)2﹣, 显然当x>时,MN随x的增大而增大, ∴当x=5时,MN有