山东济南育英中学中考数学模拟试卷0418
育英集团中考数学模拟试卷(育英集团中考数学模拟试卷(TCLTCL2020.4.182020.4.18 周六)周六) 一、选择题(本大题共一、选择题(本大题共 1212 个小题,每小题个小题,每小题 4 4 分,共分,共 4848 分.在每小题给出的四个选项中,分.在每小题给出的四个选项中, 只有一项是符合题目要求的.只有一项是符合题目要求的. )) 1.﹣的绝对值是() A.﹣5B.C.5D.﹣ 2.如图所示物体的左视图是() A.B.C.D. 3. 预计到 2025 年, 中国 5G 用户将超过 460000000, 将 460000000 用科学记数法表示 () A.4.6×109B.46×107C.4.6×108D.0.46×109 4.如图,已知 l1∥AB,AC 为角平分线,下列说法错误的是() A.∠1=∠4 C.∠2=∠3 B.∠1=∠5 D.∠1=∠3 5.实数 a、b、c 满足 a>b 且 ac<bc,它们在数轴上的对应点的位置可以是() A. C. B. D. 6.下列图形中是轴对称图形的是() A. 7.分式 A. B.C.D. 可变形为() B.﹣C.D.﹣ 8.点点同学对数据 26,36,46,5□,52 进行统计分析,发现其中一个两位数的个位数字 被黑水涂污看不到了,则计算结果与被涂污数字无关的是() A.平均数B.中位数C.方差D.标准差 9.已知 y=ax2+bx+c(a≠0)的图象如图,则 y=ax+b 和 y=的图象为() A.B.C.D. 10.如图,正六边形 ABCDEF 内接于⊙O,AB=2,则图中阴影部分的面积为() A.πB.2πC.D.4π 11. 如图, 一块矩形木板 ABCD 斜靠在墙边 (OC⊥OB, 点 A, B, C, D, O 在同一平面内) , 已知 AB=a,AD=b,∠BCO=x,则点 A 到 OC 的距离等于() A.asinx+bsinxB.acosx+bcosxC.asinx+bcosxD.acosx+bsinx 12. 在平面直角坐标系中, 已知 a≠b,设函数 y= (x+a) (x+b) 的图象与 x 轴有 M 个交点, 函数 y=(ax+1) (bx+1)的图象与 x 轴有 N 个交点,则() A.M=N N﹣1 或 M=N N+1 C.M=N 或 M=N N+1 B.M=N N﹣1 或 M=N N+2 D.M=N 或 M=N N﹣1 二、填空题:二、填空题: (本大题共(本大题共 6 6 个小题,每小题个小题,每小题 4 4 分,共分,共 2424 分.分. )) 13.分解因式:ab2﹣a=. 14.现有8 张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个 不透明的盒子里, 搅匀后从中随机地抽出一张, 抽到标有数字2的卡片的概率是. 15.当 x=时,代数式 4x2+2x﹣1 的值与代数式 3x2﹣2 的值相等. 16.如图,A、B、C、D 为一个外角为 40°的正多边形的顶点.若 O 为正多边形的中心, 则∠AOD=. 17.如图,△ABC 中,AB=AC=10,tanA=2,BE⊥AC 于点 E,D 是线段 BE 上的一个动 点,则 CD+BD 的最小值是 18.如图,把某矩形纸片ABCD 沿 EF,GH 折叠(点 E,H 在 AD 边上,点 F,G 在 BC 边 上) ,使点B 和点 C 落在 AD 边上同一点 P 处,A 点的对称点为 A′点,D 点的对称点为 D′点,若∠FPG=90°,△A′EP 的面积为 4,△D′PH 的面积为 1,则矩形ABCD 的 面积等于. 三、三、 解答题:解答题: (本大题共(本大题共 9 9 个小题,个小题, 共共 7878 分,分, 解答应写出文字说明、解答应写出文字说明、 证明过程或演算步骤.证明过程或演算步骤. )) 19.(本小题 6 分)计算: 20.(本小题 6 分)解不等式组 21.(本小题 6 分)如图, ABCD 中,BD 是它的一条对角线,过 A、C 两点作 AE⊥BD, CF⊥BD,垂足分别为 E、F,延长 AE、CF 分别交 CD、AB 于 M、N. (1)求证:四边形 CMAN 是平行四边形. (2)已知 DE=4,FN=3,求 BN 的长. ,并在数轴上表示解集. 22.(本小题 8 分)某建筑公司甲、乙两个工程队共同参与一项改造工程.已知甲队单独完成 这项工程的时间是乙队单独完成这项工程时间的1.5 倍,由于乙队还有其他任务,先由甲队 单独做 45 天后,再由甲、乙两队合做30 天,完成了该项改造工程任务. (1)求甲、乙两队单独完成改造工程任务各需多少天; (2)这项改造工程共投资240 万元,如果按完成的工程量付款,那么甲、乙两队可获工 程款各多少万元? 23.(本小题 8 分)如图,已知 Rt△ABC 中,∠ACB=90°,E 为 AB 上一点,以 AE 为直径 作⊙O 与 BC 相切于点 D,连接 DE 并延长交 AC 的延长线于点 F. (1)求证:AE=AF; (2)若 BC=4,AC=3,求⊙O 的半径长. 24.(本小题 10 分)2019 年 4 月 23 日是第二十四个“世界读书日“.某校组织读书征文比赛 活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不 完整) ,请你根据图中信息解答下列问题: (1)求本次比赛获奖的总人数,并补全条形统计图; (2)求扇形统计图中“二等奖”所对应扇形的圆心角度数; (3)学校从甲、乙、丙、丁4 位一等奖获得者中随机抽取2 人参加“世界读书日”宣传 活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率. 25.如图,矩形OABC 中,OC=4,OA=3,分别以 OC、OA 所在的直线为 x 轴、y 轴,建 立如图所示的坐标系,反比例函数y=(x>0)的图象经过点 B. (1)求反比例函数的解析式; (2)一次函数y=ax﹣1 的图象与 y 轴交于点 D,与反比例函数y=(x>0)的图象交 于点 E,且△ADE 的面积为 6,求一次函数的解析式; (3)将线段 OE 沿 x 轴以每秒 1 个单位长度的速度向右平移,设运动时间为 t,平移后 的线段与反比例函数 y=(x>0)的图象交于点 F,与 x 轴交于点 G,t 为何值时,GF =OE? 26.如图 1,在矩形 ABCD 中,AB=6,AD=8,E、F 分别为 AB、AD 边的中点,四边形 AEGF 为矩形,连接 CG. (1)如图 1,请直接写出 G 落在 AB 上时, =;如图 2,当矩形 AEGF 绕点 A 顺时针旋转至点 =; (2)当矩形AEGF 绕点 A 旋转至图 3 的位置时,图2 中 DF 与 CG 之间的数量关系是否 还成立?说明理由. (3)如图 4,在▱ABCD 中,∠B=60°,AB=6,AD=8,E、F 分别为 AB、AD 边的中 点,四边形AEGF 为平行四边形,连接CG,当▱AEGF 绕点 A 顺时针旋转 60°时(如图 5) ,请直接写出 CG 的长度. 27.如图 1,抛物线 y=ax2+bx+2 与 x 轴交于 A,B 两点,与