霍尔传感器组成的转速测量电路
仅供个人参考 霍尔传感器测量转速霍尔传感器测量转速 测量转速的方法分为模拟式和数字式两种。数字式通常采用光电编码器、圆光栅、霍尔元件等为检 测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转 速 测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。 采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计 算转化成所测转速,再由数码管显示出来。 一、主要内容 利用强磁铁与霍尔元件组成测试转体转速的测量电路,包括计数与显示电路。 二、基本要求 1. 实现基本功能 3. 画出电路图 三、主要技术指标(或研究方法) 测量范围 0—6000r/min 精 度±5r/min 工作电压 5V~12V 工作电流 低于 500mA 工作环境 温度-60 ℃~65℃ 四、 应收集的资料及参考文献 霍尔元件原理与应用 显示元件原理 数据采样整理单 2.12.1系系统统组组成成框框图图 在测量电机转速时采用电磁感应式传感器。当电机转动时,带动传感器。这种传感器可以将转速信 号转变成一个对应频率的脉冲信号输出,经过信号处理后输出到计数器。脉冲信号的频率与电机的转速 是一种线性的正比关系,因此对电机转速的测量,实质上是对脉冲信号的频率的测量。 我采用的是以 STC89C52STC89C52单片机为核心将处理好的信号经过数据处理转换成所测得的实际十进制信 号的系统。系统硬件原理框图如图 2-1 : 不得用于商业用途 仅供个人参考 霍 尔 传 感 器 信 号 处 理 单 片 机 四位数码 管显示电 路 图 2-1 系统框图 系统框图原理如图 2-1 所示,系统由传感器、信 号处理、显示电路和系统软件等部分组成。传感器 采用霍尔传感器,负责将转速转化为脉冲信号。信 号处理电路包含待测信号放大、波形变换、波形整形 电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量; 波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的 TTL/CMOS兼容信号。 处 理器采用 STC89C52单片机,显示器采用 8 位 LED 数码管动态显示。 2.22.2 霍霍尔尔传传感感器器测测转转速速原原理理及及特特性性 1、霍尔传感器测速原理: 霍尔器件是由半导体材料制成的一种薄片,器 件的长、宽 、高 分别为 l、b 、d 。若 在垂直于薄片 平面(沿厚度 d)方向施加外磁场B,在沿l方向的两个端面加一外电场,则有一定的电流流过。由 于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为: f qVB 式中:f—洛仑磁力, q—载流子电荷, V—载流子运动速度, B—磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形 成霍尔电场,霍尔元器件两个侧面间的电位差U H 称为霍尔电压。 霍尔电压大小为: U H 式中: 设 R H IB/d (mV) R H—霍尔常数, d—元件厚度, B—磁感应强度, I—控制电流 K H R H / d , 则U H = K H I B/d (mV) 为霍尔器件的灵敏系数(mV/mA/T) ,它表示该霍尔元件在单位磁感应强度和单位控制电流下输 出霍尔电动势的大小。应注意,当电磁感应强度B反向时,霍尔电动势也反向。 若控制电流保持不变,则霍尔感应电压将随外界磁场强度而变化,根据这一原理,可以将两块 永久磁钢固定在电动机转轴上转盘的边沿,转盘随被测轴旋转,磁钢也将跟着同步旋转,在转盘附 近安装一个霍尔元件,转 盘随轴旋转时,霍 尔元件受到磁钢所产生的磁场影响,输出脉冲信号。传 不得用于商业用途 仅供个人参考 感器内置电路对该信号进行放大、整 形,输出良好的矩形脉冲信号,测 量频率范围更宽,输出信号 更精确稳定,已 在工业,汽 车,航 空等测速领域中得到广泛的应用。其 频率和转速成正比,测 出脉 冲的周期或频率即可计算出转速。 2、霍尔传感器的特性: 半导体磁敏传感器是利用半导体材料中的自由电子和空穴随磁场而改变其运动方向这一特性制成 的,按其结构可分为体型和结型两大类。体型的主要有霍尔传感器(材料主要是 InSb 、InAs 、Ge、Si、 GaAs )和 磁敏电阻( 材料主要有 InSb 、InAs ) ,结 型的主要有磁敏二极管( 材料主要是 Ge、Si)和 磁敏 三极管(材料主要是 Si) 。 霍尔传感器是一种基于霍尔效应的磁传感器。霍尔效应自 1879 年被美国物理学家爱德文·霍 尔发 现至今已有 100 多年的历史,但直到 20 世纪 50 年代,由于微电子学的发展,才被重视和开发,现在, 已发展成一个品牌多样的传感器产品族,并得到广泛的应用。霍尔传感器可以检测磁场及其变化,可在 各种与磁场相关的场合中应用。 霍尔传感器具有许多优点,其 结构牢固,体 积小,质 量轻,寿 命长,安 装方便,功 能消耗小,频 率 高,耐震动,不怕灰尘,油污,水汽及盐雾等的污染或腐蚀。 霍尔传感器可直接用于检测磁场或磁特性,也可以通过在被检对象上人为设置的磁场,来检测许多 非电、非 磁的物理量,例 如力、力 矩、压 力、应 力、位 置、位 移、速 度、加 速度、角 度、角 速度、转 数、 转速以及工作状态发生变化的时间等,还可转换成电量来进行检测和控制。 2.32.3系系统统工工作作原原理理及及处处理理方方法法 1、系统工作原理: 旋转体的转速常以每分钟的转数来表示。其单位为 r/min 。由霍尔元件及外围器件组成的测速电 路将电动机转速转换成脉冲信号,送 至单片机 STC89C51的计数器 T0 进行计数,用 T1 定时测出电动机 的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结 构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周, 产生两个脉冲,机 轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数 器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机 CPU 将该数据处理 后,通过 LED 显示出来。 2、处理方法: 测速实际上就是测频,通 常可以用计数法、测脉宽法和等精度法来进行测试。所谓计数法,就是给 定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门, 对一个高精度的高频计数信号进行计数。由于闸门与被测信号不能同步,因此,这两种方法都存在±1 误差的问题,第一种方法适用于信号频率高时使用,第二种方法则在信号频率低时使用。等精度法则对 高、低频信号都有很好的适应性。此系统采用计数法测速。单片机 STC89C52内部具有 2 个 16位定时 不得用于商业用途 仅供个人参考 /计数器 ,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出中断要求的功能。在构成为 定时器时,每个机器周期加 1( 使用 12MHz时钟时,每 1us加 1), 这样以机器