-矩阵的Kronecker乘积的性质与应用
精品文档---下载后可任意编辑 摘要 根据矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特别乘积,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。 本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker积进行介绍和必要的说明。之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。 矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的讨论中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。 关键词: 矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程 Properties and Applications of matrix Kronecker product Abstract According to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no sense.That is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product). This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank,eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof. Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of ination processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords: Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations 目录 摘要I AbstractII 第一章矩阵的Kronecker积1 1.1 矩阵的Kronecker积的定义1 1.2 矩阵的Kronecker积的性质1 第二章 Kronecker积的有关定理及推论6 第三章矩阵的拉直9 矩阵的拉直的定义9 矩阵的拉直的性质9 第四章矩阵的Kronecker积与矩阵方程11 矩阵的Kronecker积与Lyapunov矩阵方程11 矩阵的Kronecker积与一般线性矩阵方程13 矩阵的Kronecker积与矩阵微分方程14 参考文献16 致谢18 符号说明 实数域 复数域 零矩阵 Kronecker积 精品文档---下载后可任意编辑 第一章 矩阵的Kronecker积 1.1 矩阵的Kronecker积的定义 设矩阵,矩阵,定义A和B的Kronecker积(或直积,张量积)为: 可以看出,其结果是一个矩阵,同时也是一个以为子块的分块矩阵. 例1.1 设,,则 由此可见,与具有相同的阶数,但是它们并不相等,也就是说,Kronecker积不满足交换律. 1.2 矩阵的Kronecker积的性质 虽然Kronecker积不满足交换律,但是具有以下一些性质: 性质1.2.1 设矩阵,矩阵,则 (这个O为矩阵). 证明:略. 性质1.2.2 设k为任一常数,矩阵,矩阵,则 . 证明:不失一般性,设,则: , 根据Kronecker积的定义可以得到: , , 即,. 所以. 性质1.2.3 设A,B为同阶矩阵(同阶是为了可以做加法),则 ,. 证明:不失一般性,设,, 则: , 根据Kronecker积的定义可以得到: (1.1)*