杨浦区第二学期八年级初二期中考试数学试卷
欢迎阅读 杨浦区杨浦区 20112011 学年度第二学期初二数学期中考试卷学年度第二学期初二数学期中考试卷 (考试时间:(考试时间:9090 分钟分钟满分满分 100100 分)分) 2012 2012、、4 4 一、填空题:一、填空题: (本大题共(本大题共 1212 题,每题题,每题 2 2分,分, 满分满分 2424 分)分) 1.若函数y (k 1)x1是一次函数,则k的取值范围为. 2.已知一次函数y kx b的图像经过点A(0,2),并与直线y 4x平行,那么这个一次函数解析 式是_. 3.如果一次函数y kx 1中 y随 x 的增大而减小,那么这 不经过第___ 象限. 4.在图中,将直线OA向上平移 3 个单位,所得直线的函 为. 5.方程2x 1 x的解是 __. 第 4题图 个一次函数一定 数解析式 x y 2 6.方程组的解为. xy 3 7.十二边形的内角和为_______度. AD O BC 第 10 题图 x233x13x23 2 8.用换元法解 方程.如果设y ,则原方程可 化为 y 的整式 方程 xxx 32 是. 9.已知一个多边形的每个外角都为72,那么这个多边形是边形. 10.如图,□ABCD的周长是 28cm,AC 和 BD 交于 O,△OAB的周长比△OBC的周长小 2cm, 则 AB =,BC =. 22 x y 20 11.解方程组 2 时,可先化为和两个方程组. 2 x 5xy 6y 0 12.如果直线y 2x k与两坐标轴所围成的三角形面积是 9,则 k的值为. 二、选择题(本大题共二、选择题(本大题共 6 6 题,每题题,每题 2 2分,分, 满分满分 1212 分)分) 13.已知函数y x 3,若当x a时,y 5;当x b时,y 3,a 和 b 的大小关系 是……………………………………………………………………………… () (A)ab;(B)a=b;(C)ab;(D)不能确定. 14.下列方程中,是二项方程的为………………………………………………() (A)x2 2x 1; (B)x2 x 0; (C)x38 0;(D)x 0. 15.下列方程中, 有实数解的是…………………………………………………() (A)x61 0; (B) x2 ; (C)x 2 3 0; (D)2 x x. x 2x 2 16. 某灾区恢复生产,计划在一定时间内种60 亩蔬菜,实际播种时每天比原计划多种3 亩,因此 提 前 一 天 完 成 任 务 , 问 实 际 种 了 几 天 ? 现 设 实 际 种 了x天 , 则 可 列 方 程…………………………………………………………………………………() 页脚内容 欢迎阅读 6060606060606060 (A) 3; (B) 3; (C)1; (D)1. xx 1x 1xxx 3x 3x 17.已知平行四边形的一条边长为 14,下列各组数中,能分别作它的两条对角线长的 是…………………………………………………………………………………() (A)10与 16; (B)12 与 16;(C)20 与 22; (D)10 与 18. 18.一个面积为 2 的平行四边形被直线分成面积为 x,y 的两部分,则 y 与 x 之间的函数关系只可 能是………………………………………………………………() 三、简答题(本大题共三、简答题(本大题共 5 5 题,每题题,每题 6 6分,分, 满分满分 3030 分)分) 19.解关于 x 的方程:b(x 2) 4.20.解方程:32x3 x. 解:解:解:解: 15 x yx y 7, 21.解方程组: 3 1 1. x yx y 22 x 4y 0 22.解方程组: 22 x 2xy y 9 ② ① 解:解:解:解: 23.已知:如图,O为平行四边形 ABCD的对角线 AC 的中点,过点 O作一条直线分别与 AB、CD 交于点 M、N,点 E、F 在直线 MN上,且 OE=OF. 求证:∠MAE=∠NCF. 四、解答题(本大题共解答题(本大题共 3 3 题,每题题,每题 8 8 分,分, 满分满分 2424 分)分) 24.如图,已知A(4,a) ,B(-2,-4)是一次函数 y=kx+b的图象和反比例函数 m y=的图象的交点. x (1)求反比例函数和一次函数的解祈式; (2)求△A0B的面积. 解:解: 25. 某区需修建一条 2400米长的封闭式污水处理管道. 为了尽量减少施工 对市民生活等的影响, 实际施工比原计划每天多修 10米,结果提前 20 天完成了任务.试问实际每天修多少米? 解:解: 26.如图,已知:在平行四边形 ABCD中,∠C=60°,E、F分别是 AB、 CD 的中点,且 AB=2AD. 求证:DE∶BD=3∶3. 五、五、 (本大题满分(本大题满分 1010 分,第(分,第(1 1)小题)小题 2 2 分,第(分,第(2 2)①)①②小题各②小题各4 4 分)分) 4 图象交于点27.如图已知一次函数 y=-x+7与正比例函数 y=x的 3 A,且与 x轴交于点 B. (1)求点 A和点 B的坐标; (2)过点 A 作 AC⊥y 轴于点 C,过点 B 作直线 l∥y 轴.动点 P 从点 O 出发,以每秒 1 个单位长 的速度,沿 O﹣C﹣A 的路线向点 A运动;同时直线 l 从点 B出发,以相同速度向左平移,在平移 过程中,直线 l 交 x 轴于点 R,交线段 BA 或线段 AO 于点 Q.当点 P 到达点 A 时,点 P 和直线 l 都停止运动.在运动过程中,设动点 P运动的时间为 t 秒(t0). ①当 t 为何值时,以 A、P、R为顶点的三角形的面积为 8? ②是否存在以 A、P、Q 为顶点的三角形是 QA=QP的等腰三角形?若存在,求t 的值;若不存 在,请说明理由. 页脚内容 欢迎阅读 解: 页脚内容