最新苏教版九年级数学上册期末测试卷及答案【一套】
最新苏教版九年级数学上册期末测试卷及答案【一套】最新苏教版九年级数学上册期末测试卷及答案【一套】 班级:姓名: 一、选择题(本大题共一、选择题(本大题共 1010 小题,每题小题,每题 3 3 分,共分,共 3030 分)分) 1.比较 2,5,37的大小,正确的是() A.2 5 37 C.37 2 5 B.2 37 5 D.37 5 2 2.若一次函数y (k 2)x1的函数值 y 随x的增大而增大,则() A.k 2B.k 2C.k 0D.k 0 3x2m 23.关于x的方程无解,则m的值为() x1x1 A.﹣5B.﹣8C.﹣2D.5 4.今年一季度,河南省对“一带一路”沿线国家进出口总额达 214.7 亿元,数 据“214.7 亿”用科学记数法表示为() A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 5.如图,数轴上两点 A,B 表示的数互为相反数,则点 B 表示的() A.-6B.6C.0D.无法确定 1 6.已知直线 y 1=kx+1(k<0)与直线 y2=mx(m>0)的交点坐标为( , 2 1 m),则不等式组 mx﹣2<kx+1<mx 的解集为() 2 33311 A.xB.xC.xD.0 x 22222 7.如图,在OAB和OCD中, OA OB,OC OD,OA OC,AOB COD 40,连接AC,BD交于点M,连 接OM.下列结论:①AC BD;②AMB 40;③OM平分BOC;④MO 平分BMC.其中正确的个数为(). 1 / 6 A.4B.3C.2D.1 8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c0的 解集是() A.1x5C.x5D.x<-1 或 x>5 9.扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之 一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为 xm ,则可列方程为() 3 30 x20 x 2030A. 4 1 C.30 x 220 x 2030 4 1 302x20 x 2030B. 4 3 D.302x20 x2030 4 10.如图,直线 L 上有三个正方形 a,b,c,若 a,c 的面积分别为 1 和 9,则 b 的面积为() A.8B.9C.10D.11 二、填空题二、填空题(本大题共(本大题共 6 6 小题,每小题小题,每小题 3 3 分,共分,共 1818 分)分) 2 / 6 31 1 1.计算: |32|____________. 218 2 2.分解因式:a34a2 4a __________. 3.若代数式 1﹣8x与 9x﹣3 的值互为相反数,则x=__________. 4.如图,已知△ABC的周长是 21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于 2 D,且OD=4,△ABC的面积是__________. 5.如图,直线y=x+2 与直线y=ax+c相交于点P(m,3),则关于x的不等式 x+2≤ax+c的解为__________. 6.在平面直角坐标系中,四边形 AOBC 为矩形,且点 C 坐标为(8,6),M 为 BC 中点,反比例函数y k (k 是常数,k≠0) 的图象经过点 M,交 AC 于点 N, x 则 MN 的长度是__________. 三、解答题(本大题共三、解答题(本大题共 6 6 小题,共小题,共 7272 分)分) x3x2 4 x31 1(2)解不等式组:12x1.(1)解方程: x2x2 x1 3 2.已知二次函数的图象以 A(﹣1,4)为顶点,且过点 B(2,﹣5) 3 / 6 (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标; (3)将该函数图象向右平移,当图象经过原点时,A、B 两点随图象移至 A′、 B′,求△O A′B′的面积. 3.如图,在四边形 ABCD 中,∠ABC=90°,AC=AD,M,N 分别为 AC,CD 的中 点,连接 BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC 平分∠BAD,AC=2,求 BN 的长. 4.如图,四边形 ABCD 内接于⊙O,∠BAD=90°,点 E 在 BC 的延长线上,且∠ DEC=∠BAC. (1)求证:DE 是⊙O 的切线; (2)若 AC∥DE,当 AB=8,CE=2 时,求 AC 的长. 5.某养鸡场有 2500 只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的 质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下 4 / 6 列问题: (1)图①中m的值为; (2)求统计的这组数据的平均数、众数和中位数; (3) 根据样本数据,估计这 2500 只鸡中,质量为2.0kg的约有多少只? 6.学校需要添置教师办公桌椅 A、B 两型共 200 套,已知 2 套 A 型桌椅和 1 套 B 型桌椅共需 2000 元,1 套 A 型桌椅和 3 套 B 型桌椅共需 3000 元. (1)求 A,B 两型桌椅的单价; (2)若需要 A 型桌椅不少于 120 套,B 型桌椅不少于 70 套,平均每套桌椅需 要运费 10 元.设购买 A 型桌椅 x 套时,总费用为 y 元,求 y 与 x 的函数关系 式,并直接写出 x 的取值范围; (3)求出总费用最少的购置方案. 5 / 6 参考答案参考答案 一、选择题(本大题共一、选择题(本大题共 1010 小题,每题小题,每题 3 3 分,共分,共 3030 分)分) 1、C 2、B 3、A 4、C 5、B 6、B 7、B 8、D 9、D 10、C 二、填空题二、填空题(本大题共(本大题共 6 6 小题,每小题小题,每小题 3 3 分,共分,共 1818 分)分) 1、 24 3 2、a(a2)2; 3、2 4、42 5、x≤1. 6、5 三、解答题(本大题共三、解答题(本大题共 6 6 小题,共小题,共 7272 分)分) 1、(1)x=0;(2)1<x≤4 2、(1)y=﹣x2﹣2x+3;(2)抛物线与 y 轴的交点为:(0,3);与 x 轴的交 点为:(﹣3,0),(1,0);(3)15. 3、(1)略;(2) 2 4、(1)略;(2)AC 的长为 16 5 . 5 5、(1)28. (2)平均数是 1.52. 众数为 1.8. 中位数为 1.5. (3)200 只. 6、(1)A,B 两型桌椅的单价分别为 600 元,800 元;(2)y=﹣200 x+162000 (120≤x≤130);(3)购买 A 型桌椅 130 套,购买 B 型桌椅 70 套,总费用最 少,最少费用为 136000 元. 6 / 6