新西师大版九年级数学上册月考试卷(汇编)
新西师大版九年级数学上册月考试卷(汇编)新西师大版九年级数学上册月考试卷(汇编) 班级:姓名: 一、选择题(本大题共一、选择题(本大题共 1010 小题,每题小题,每题 3 3 分,共分,共 3030 分)分) 1.﹣6 的倒数是() 1 A.﹣ 6 1 B. 6 C.﹣6D.6 2.关于二次函数y 2x24x1,下列说法正确的是() A.图像与 y轴的交点坐标为0,1 B.图像的对称轴在 y 轴的右侧 D. y 的最小值为-3C.当x 0时, y 的值随x值的增大而减小 3.下列说法正确的是() A.一个数的绝对值一定比 0 大 B.一个数的相反数一定比它本身小 C.绝对值等于它本身的数一定是正数 D.最小的正整数是 1 4.一组数据:1、2、2、3,若添加一个数据 2,则发生变化的统计量是() A.平均数B.中位数 + C.众数D.方差 5.已知关于 x 的分式方程 () A.m>2 =1 的解是非负数,则 m 的取值范围是 B.m≥2 C.m≥2 且 m≠3D.m>2 且 m≠3 6.若x y 2,则x2 y22xy的值为() A.2B.2C.4D.4 7.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开, 剪下的阴影三角形与原三角形不相似的是() A. B. 1 / 7 B.C.D. 2 8.如图,已知二次函数y ax bxca 0的图象如图所示,有下列 5 个结 论①abc 0;②ba c;③4a 2b c 0;④3a c; ⑤ab mamb(m 1的实数).其中正确结论的有() A.①②③B.②③⑤C.②③④D.③④⑤ 9.如图,已知AB是O的直径,点P在BA的延长线上,PD与O相切于点 D,过点B作PD的垂线交PD的延长线于点C,若O的半径为 4,BC 6,则 PA的长为() A.4B.2 3C.3D.2.5 10.如图在正方形网格中,若 A(1,1),B(2,0),则 C 点的坐标为 () A.(-3,-2)B.(3,-2)C.(-2,-3)D.(2,-3) 二、填空题二、填空题(本大题共(本大题共 6 6 小题,每小题小题,每小题 3 3 分,共分,共 1818 分)分) 2 / 7 1.计算: 16 =__________. 9 2.分解因式:a34a2 4a __________. 3.若一个多边形的内角和是其外角和的 3 倍,则这个多边形的边数是______. 4.如图,直线 AB,CD 相交于点 O,EO⊥AB 于点 O,∠EOD=50°,则∠BOC 的度 数为__________. 5.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在 B 处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB 上的点 C 处, EF为折痕,连接 AC .若CF=3,则 tanBAC=__________. 6.某活动小组购买了 4 个篮球和 5 个足球,一共花费了 435 元,其中篮球的单 价比足球的单价多 3 元,求篮球的单价和足球的单价.设篮球的单价为x元,足 球的单价为 y 元,依题意,可列方程组为____________. 三、解答题(本大题共三、解答题(本大题共 6 6 小题,共小题,共 7272 分)分) 1.解方程 2.已知关于 x 的一元二次方程 x2﹣(2k﹣1)x+k2+k﹣1=0 有实数根. (1)求 k 的取值范围; (2)若此方程的两实数根 x 1,x2 满足 x 1 2+x 2 2=11,求 k 的值. 3 / 7 x3 1 2x1x 1 3.如图,已知点 A(﹣1,0),B(3,0),C(0,1)在抛物线 y=ax2+bx+c 上. (1)求抛物线解析式; (2)在直线 BC 上方的抛物线上求一点 P,使△PBC 面积为 1; (3)在 x 轴下方且在抛物线对称轴上,是否存在一点 Q,使∠BQC=∠BAC?若 存在,求出 Q 点坐标;若不存在,说明理由. 4.如图,在△ABC 中,点 D,E 分别在边 AB,AC 上,∠AED=∠B,射线 AG 分别 交线段 DE,BC 于点 F,G,且 (1)求证:△ADF∽△ACG; (2)若 AD1AF ,求的值. AC2FG ADDF . ACCG 5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社 会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本, 采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一 项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图 中提供的信息,解答下列问题: 4 / 7 (1)求 n 的值; (2)若该校学生共有 1200 人,试估计该校喜爱看电视的学生人数; (3)若调查到喜爱体育活动的 4 名学生中有 3 名男生和 1 名女生,现从这 4 名 学生中任意抽取 2 名学生,求恰好抽到 2 名男生的概率. 6.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其 成本为每条 40 元,当售价为每条 80 元时,每月可销售 100 条.为了吸引更多 顾客,该网店采取降价措施.据市场调查反映:销售单价每降 1 元,则每月可 多销售 5 条.设每条裤子的售价为x元(x为正整数),每月的销售量为 y 条. (1)直接写出 y 与x的函数关系式; (2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利 润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出 200 元资助贫困学生.为 了保证捐款后每月利润不低于 4220 元,且让消费者得到最大的实惠,该如何确 定休闲裤的销售单价? 5 / 7 参考答案参考答案 一、选择题(本大题共一、选择题(本大题共 1010 小题,每题小题,每题 3 3 分,共分,共 3030 分)分) 1、A 2、D 3、D 4、D 5、C 6、D 7、C 8、B 9、A 10、B 二、填空题二、填空题(本大题共(本大题共 6 6 小题,每小题小题,每小题 3 3 分,共分,共 1818 分)分) 4 1、 3 2、a(a2)2; 3、8 4、140° 1 5、 4 4x5y 435 6、 x y 3 三、解答题(本大题共三、解答题(本大题共 6 6 小题,共小题,共 7272 分)分) 1、x 2 5 2、(1)k≤ 8 ;(2)k=﹣1. 3、(1)抛物线的解析式为 y=﹣ 1 x2 2 3 + 3 x+1;(2)点 P 的坐标为(1, (2,1);(3)存在,理由略. 4、(1)略;(2)1. 5、(1)50;(2)240;(3) 1 2 . 6 / 7 4 3 )或 6、(1) y 5x500 ;(2)当降价 10 元时,每月获得最大利润为 4500 元;(3) 当销售单价定为 66 元时,即符合网店要求,又能让顾客得到最大实惠. 7 / 7