高考数学重点知识点2024
下载后可任意编辑 高考数学重点知识点2024 高考数学复习知识点 1.定义: 用符号〉,=,〈号连接的式子叫不等式。 2.性质: ①不等式的两边都加上或减去同一个整式,不等号方向不变。 ②不等式的两边都乘以或者除以一个正数,不等号方向不变。 ③不等式的两边都乘以或除以同一个负数,不等号方向相反。 3.分类: ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。 ②一元一次不等式组: a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。 b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 4.考点: ①解一元一次不等式(组) ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题 ③用数轴表示一元一次不等式(组)的解集 高三下册数学知识点归纳 (一)导数第一定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);假如△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f’(x0),即导数第一定义 (二)导数第二定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);假如△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f’(x0),即导数第二定义 (三)导函数与导数 假如函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y’,f’(x),dy/dx,df(x)/dx。导函数简称导数。 (四)单调性及其应用 1.利用导数讨论多项式函数单调性的一般步骤 (1)求f¢(x) (2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)0的解集与定义域的交集的对应区间为增区间;f¢(x)