高三常考数学知识难点
下载后可任意编辑 高三常考数学知识难点 高三数学知识点1 不等式分类: 不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“0)个单位长度 (x,y+n)或(x,y-n) 图形向上(或向下)平移了n个单位长度 纵坐标不变,横坐标加上(或减去)n(n>0)个单位长度 (x+n,y)或(x-n,y) 图形向右(或向左)平移了n个单位长度伸长横坐标不变,纵坐标扩大n(n>1)倍(x,ny)图形被纵向拉长为原来的n倍 纵坐标不变,横坐标扩大n(n>1)倍(nx,y)图形被横向拉长为原来的n倍压缩横坐标不变,纵坐标缩小n(n>1)倍(x,)图形被纵向缩短为原来的 纵坐标不变,横坐标缩小n(n>1)倍(,y)图形被横向缩短为原来的放大横纵坐标同时扩大n(n>1)倍(nx,ny)图形变为原来的n2倍缩小横纵坐标同时缩小n(n>1)倍(,)图形变为原来的 78、求与几何图形联系的特别点的坐标,往往是向x轴或y轴引垂线,转化为求线段的长,再根据点所在的象限,醒上相应的符号。求坐标分两种情况:(1)求交点,如直线与直线的交点;(2)求距离,再将距离换算成坐标,通常作x轴或y轴的垂线,再解直角三角形。 高三数学知识点3 1、集合的概念 集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。 集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。 2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a∉A。 3、集合中元素的特性 (1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6ÎA。 (2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。 (3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。 4、集合的分类 集合科根据他含有的元素个数的多少分为两类: 有限集:含有有限个元素的集合。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。 无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。 特别的,我们把不含有任何元素的集合叫做空集,记错F,如{xÎR|+1=0}。 5、特定的集合的表示 为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。 (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。 (2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。 (3)全体整数的集合通常简称为整数集Z。 (4)全体有理数的集合通常简称为有理数集,记做Q。 (5)全体实数的集合通常简称为实数集,记做R。 高三数学知识点4 复数的概念: 形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模: 复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。 高三数学知识点5 一、柱、锥、台、球的结构特征 结构特征 图例 棱柱 (1)两底面相互平行,其余各面都是平行四边形; (2)侧棱平行且相等. 圆柱 (1)两底面相互平行;(2)侧面的母线平行于圆柱的轴; (3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体. 棱锥 (1)底面是多边形,各侧面均是三角形; (2)各侧面有一个公共顶点. 圆锥 (1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体. 棱台 (1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分. 圆台 (1)两底面相互平行; (2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分. 球 (1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体. 二、简单组合体的结构特征 三、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面对后面正投影);侧视图(从左向右)、俯视图(从上向下) 注: 正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 四、空间几何体的直观图——斜二测画法 斜二测画法特点: ①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 五、柱体、锥体、台体