初二一次函数经典题型
初二一次函数经典题型基本概念1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。例题:在匀速运动公式 中, 表示速度, 表示时间, 表示在时间 内所走的路程,则vtstst变量是________,常量是_______。在圆的周长公式 C=2π r 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量 x 和 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把 x 称为自变量,把 y 称为因变量,y 是 x 的函数。*判断 Y 是否为 X 的函数,只要看 X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:下列函数(1)y=πx (2)y=2x-1 (3)y= (4)y=2-1-3x (5)y=x2-1 中,是一1x次函数的有( )(A)4 个 (B)3 个 (C)2 个 (D)1 个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。例题:下列函数中,自变量 x 的取值范围是 x≥2 的是( )A.y= B.y= C.y= D.y= ·2x1224x2x函数 中自变量 x 的取值范围是___________.5y已知函数 ,当 时,y 的取值范围是 ( )21x1A. B. C. D.3y2253253y5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值) ;第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点) ;第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来) 。8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质一般地,形如 y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中 k 叫做比例系数.注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为 1 ③ b 取零当 k>0 时,直线 y=kx 经过三、一象限,从左向右上升,即随 x 的增大 y 也增大;当k0 时,图像经过一、三象限;k0,y 随 x 的增大而增大;k0 时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y 随 x 的增大而增大;k0 时,将直线 y=kx 的图象向上平移 b 个单位;当 b0 b0图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限k0 时,向上平移;当 b0 或 ax+b y=k(x+2)+b+3;( “左加右减,上加下减” ) 。1. 直线 y=5x-3 向左平移 2 个单位得到直线 。2. 直线 y=-x-2 向右平移 2 个单位得到直线 3. 直线 y= x 向右平移 2 个单位得到直线 14. 直线 y= 向左平移 2 个单位得到直线 35. 直线 y=2x+1 向上平移 4 个单位得到直线 6. 直线 y=-3x+5 向下平移 6 个单位得到直线 7. 直线 向上平移 1 个单位,再向右平移 1 个单位得到直线 。xy38. 直线 向下平移 2 个单位,再向左平移 1 个单位得到直线________。49. 过点(2,-3)且平行于直线 y=2x 的直线是____ _____。10. 过点(2,-3)且平行于直线 y=-3x+1 的直线是___________.11.把函数 y=3x+1 的图像向右平移 2 个单位再向上平移 3 个单位,可得到的图像表示的函数是____________;12.直线 m:y=2x+2 是直线 n 向右平移 2 个单位再向下平移 5 个单位得到的,而(2a,7)在直线 n 上,则 a=____________;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形) ;往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;1、 直线经过(1,2) 、 (-3,4)两点,求直线与坐标轴围成的图形的面积。2、 已知一个正比例函数与一个一次函数的图象交于点 A(3,4) ,且 OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;3、 已知直线 m 经过两点(1,6 ) 、 (-3,-2) ,它和 x 轴、y 轴的交点式 B、A,直线 n 过点(2,-2) ,且与 y 轴交点的纵坐标是 -3,它和 x 轴、y 轴的交点是 D、C;(1) 分别写出两条直线解析式,并画草图;(2) 计算四边形 ABCD 的面积;(3) 若直线 AB 与 DC 交于点 E,求△BCE 的面积。4、 如图,A、B 分别是 x 轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线 PA 交 y 轴于点 C(0,2) ,直线 PB 交 y 轴于点 D,△AOP 的面积为 6;(1) 求△COP 的面积;(2) 求点 A 的坐标及 p 的值;(3) 若△BOP 与△DOP 的面积相等,求直线 BD 的函BA12340 4321O xy-346-2FEDCBA(2,p)yxPOFEDCBA