【八年级下册数学北师大版】第4章单元测试2
单元测试(二) 一、选择题 1.下列运算正确的是( ) A.(a+b)2=a2+b2 B.(﹣2ab3)2=﹣4a2b6 C.3a2﹣2a3=a6 D.a3﹣a=a(a+1)(a﹣1) 2.因式分解3y2﹣6y+3,结果正确的是( ) A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D. 3.分解因式:y3﹣4y2+4y=( ) A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2) 4.下列各因式分解正确的是( ) A.x2+2x﹣1=(x﹣1)2 B.﹣x2+(﹣2)2=(x﹣2)(x+2) C.x3﹣4x=x(x+2)(x﹣2) D.(x+1)2=x2+2x+1 5.把代数式x3﹣4x2+4x分解因式,结果正确的是( ) A.x(x2﹣4x+4)B.x(x﹣4)2C.x(x+2)(x﹣2)D.x(x﹣2)2 6.因式分解x2y﹣4y的结果是( ) A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2) 7.把多项式x2﹣8x+16分解因式,结果正确的是( ) A.(x﹣4)2B.(x﹣8)2C.(x+4)(x﹣4)D.(x+8)(x﹣8) 8.下列代数式变形正确的是( ) A.﹣a+b=(a+b) B.﹣4a2+b2=(2a﹣b)(2a+b) C.(﹣x﹣y)2=(x+y)2 D.x2﹣4x﹣3=(x﹣2)2﹣3 9.下列各式中,能用完全平方公式进行因式分解的是( ) A.x2﹣1B.x2+2x﹣1C.x2+x+1D.4x2+4x+1 10.因式分解4﹣4a+a2正确的是( ) A.(2﹣a)2B.(2+a)2C.(2﹣a)(2+a)D.4(1﹣a)+a2 11.把x2y﹣y分解因式,正确的是( ) A.y(x2﹣1)B.y(x+1)C.y(x﹣1)D.y(x+1)(x﹣1) 12.下列因式分解正确的是( ) A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2 C.a3﹣4a2=a2(a﹣4) D.1﹣4x2=(1+4x)(1﹣4x) 二、填空题 13.分解因式:x2﹣4= . 14.把多项式x2﹣3x因式分解,正确的结果是 . 15.因式分解:x2+6x= . 16.分解因式:m2+4m= . 17.因式分解3a2+a= . 三、解答题 18.一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132. (1)求证:M与其“友谊数”的差能被15整除; (2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值. 19.若一个两位正整数m的个位数为8,则称m为“好数”. (1)求证:对任意“好数”m,m2﹣64一定为20的倍数; (2)若m=p2﹣q2,且p,q为正整数,则称数对(p,q)为“友好数对”,规定:H(m)=,例如68=182﹣162,称数对(18,16)为“友好数对”,则H(68)==,求小于50的“好数”中,所有“友好数对”的H(m)的最大值. 20.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”. 例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”. (1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ; (2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”; (3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”. 例如:1423与4132为一组“相关和平数” 求证:任意的一组“相关和平数”之和是1111的倍数. 21.先阅读下列材料,然后解后面的问题. 材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12. (1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除; (2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值. 22.对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k 为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点. (1)求证:若“矩数”m是3的倍数,则m一定是6的倍数; (2)把“矩数”p与“矩数”q的差记为 D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则 D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当 D(p,q)=30时,求的最大值. 23.仔细阅读下面例题,解答问题: 例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值. 解:设另一个因式为(x+n),得 x2﹣4x+m=(x+3)(x+n) 则x2﹣4x+m=x2+(n+3)x+3n ∴. 解得:n=﹣7,m=﹣21 ∴另一个因式为(x﹣7),m的值为﹣21 问题:仿照以上方法解答下面问题: 已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值. 参考答案与解析 1.下列运算正确的是( ) A.(a+b)2=a2+b2B.(﹣2ab3)2=﹣4a2b6 C.3a2﹣2a3=a6D.a3﹣a=a(a+1)(a﹣1) 【考点】55:提公因式法与公式法的综合运用;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式. 【专题】选择题 【分析】A、原式利用完全平方公式化简得到结果,即可做出判断; B、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断; C、原式不能合并,错误; D、原式提取公因式,再利用平方差公式分解即可. 【解答】解:A、原式=a2+b2+2ab,错误; B、原式=4a2b6,错误; C、原式不能合并,错误; D、原式=a(a+1)(a﹣1),正确, 故选D