青岛版九年级数学上册解直角三角形单元测试卷96
青岛版九年级数学上册解直角三角形单元测试卷青岛版九年级数学上册解直角三角形单元测试卷 9696 一、选择题(共一、选择题(共 1010 小题;共小题;共 5050 分)分) 1. 在 A. 点处,再往斜坡 知斜坡 数 据 : , 的坡度为 , ) 中, B. 上走 ,如果, C. ,那么 D. 米到达 ,已 平行, , 米,参考 2. 如图,小明在水平面处,测得某建筑物 ,建筑物 的顶端的仰角为 垂直于平台 , ,向正前方向走 与水平面 (精确到 , 米到达点处,测得建筑物的顶端的仰角为 ,平台 点,, ,,均在同一平面内,则建筑物的高度约为 A.米B. 中, 米 , C. , 米 ,则 D. 的值是 米 3. 如图,在 A. 4. 已知 B.C.D. ,求.若以科学计算器计算且结果以“度,分,秒 ”为单位,最后应该按键 A. 5. 在 A. 中, 为 B. , B. , C. C. ,则 , D. 的度数为 D. 6. 如图,从热气球处测得地面,两点的俯角分别为,如果此时热气球处的高度 米,点,,在同一直线上,则,两点的距离是 第1页(共11 页) A. C. 7. 如图, 米 米 B. D. 的顶点都是正方形网格中的格点,则 米 米 等于 A.B.C.D. 长的斜道,用科8. 如图,为方便行人推车过天桥,市政府在高的天桥两端分别修建了 学计算器计算斜道的倾斜角,下列按键顺序正确的是 A. C. 9. A. 的值为 B. B. D. C.D. 10. 某地下车库出口处安装了“两段式栏杆”,如图所示,点是栏杆转动的支点,点是栏杆两 段的联结点.当车辆经过时,栏杆最多只能升起到如图所示的位置,其示意图如图 , ) ,, (参考数据: 所 示 ( 栏 杆 宽 度 忽 略 不 计 ) , 其 中 ,, 米,那么适合该地下车库的车辆限高标志牌为 A.B. C.D. 第2页(共11 页) 二、填空题(共二、填空题(共 6 6 小题;共小题;共 3131 分)分) 11. 解直角三角形的概念: 12. 由已知的元素,求出直角三角形其他所有边和角的过程叫. . ,的长都为,当时,人字梯 ,顶端离地面的高度 , 是.(结果精确到 ) ,参考依据: 13. 人字梯为现代家庭常用的工具(如图),若 14. 在中,,,那么的值等于. 15. 已知下列锐角三角函数值,用计算器求其相应的锐角(结果精确到). (1)已知 ; (2)已知 ; (3)已知 . 16. 如图所示,点 , 在的边 ,则线段 上, 的长为. ,, ,则锐角,已知,则锐角 ,则锐角,已知,则锐角 ,则锐角,已知,则锐角 三、解答题(共三、解答题(共 8 8 小题;共小题;共 104104 分)分) 17. 在中,,,,求,的长. 第3页(共11 页) 18. 已知锐角的三角比的值,用计算器求锐角(精确到 (1) (2) (3) (4) 19. 计算. (1) (2). 中, ,,求 , 的长. , . . . . . ). 20. 如图,是上一点,连接.若 21. 如图,某建筑物 三点在一条直线上. 的顶部有一避雷针 和 ,甲、乙两人分别在相距的、两处测 ,且、、得点和点的仰角分别为,处到建筑物的距离 (1)处到建筑物的距离 (2)求避雷针 22. 如图,在 考: 的高度. (结果保留整数, 中, , 等于. , , ) , 米, ,供选用) ,解这个直角三角形.(参 第4页(共11 页) 23. 求下列式的值:. 方向,在 24. 为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地和人工智能科技馆参观 学习.如图,学校在点处,位于学校的东北方向,位于学校南偏东 的南偏西方向处.学生分成两组,第一组前往地,第二组前往 ,第二组乘公交车,速度是地.两组同学同时从学校出发,第一组乘客车,速度是 保留根号). ,两组同学到达目的地分别用了多长时间 ?哪组同学先到达目的地?请说明理由(结果 第5页(共11 页) 答案答案 第一部分第一部分 1. B【解析】如图, 在 2. B 中, , , , . 【解析】斜坡的坡度为, 设 解得 米, , 米, ,, , . 米, 米. , , 第6页(共11 页) 米, 3. C 4. D 5. A 千米. 【解析】 6. D 因为 所以在 . 【解析】由已知,得 于点, 中, , ,,, , 在 所以 中,米, 米. 7. B【解析】 8. B【解析】 . ,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为 . 故选 B. 9. B 10. A 【解析】过作,垂足为,过点作,垂足为 . 解得 . . , , , ,即 . . , 第7页(共11 页) 该地下车库的车辆限高标志牌为 第二部分第二部分 11. 解直角三角形 12. 13. 14. . 【解析】如图所示, 由上式可知 , , . . . 15. 16. 第三部分第三部分 17. 18. (1) (2) (3) (4) ,,,,, . . . . . 19. (1) 第8页(共11 页) (2) 20. 设 在 在 21. (1) 在 22. 在 因为 所以 因为 所以 因为 所以 . (2) 在 , ,则 中, , , . (舍去), . 中, , . 中, 中,, , . . . . 中, ,, , , , , . , 23. 24. 方法 : 作于,依题意得: 第9页(共11 页) 在 设 在 在 第一组用时: 第二组用时: , , , , . 中, , , , ,则 中, , , , ,. ,, , , (或者由勾股定理得). 中, , , , , ; , . , ,, 第二组先到达目的地. 答:第一组用时 【解析】方法 : 依题意得: , , 于点, ,,. 小时,第二组用时小时,第二组先到达目的地. 第10页(共11 页) 在 设 在 第一组用时: 第二组用时: , , 中, , , ,则, , . 中, , ,, 由勾股定理得:, ,, , ; , . 第二组先到达目的地. 答:第一组用时小时,第二组用时小时,第二组先到达目的地. 第11页(共11 页)