试验六图像分割
信 息 工 程 学 院 实 验 报 告 课程名称:数字图像处理 成绩: 实验项目名称:实验六 图像分割实验时 间: 班级:姓名:学号: 一、实验目的一、实验目的 1. 使用 MatLab 软件进行图像的分割。使学生通过实验体会一些主要的分割算子对 图像处理的效果,以及各种因素对分割效果的影响。 2. 要求学生能够自行评价各主要算子在无噪声条件下和噪声条件下的分割性能。 能 够掌握分割条件(阈值等)的选择。完成规定图像的处理并要求正确评价处理结果,能够 从理论上作出合理的解释。 二、实验内容与步骤二、实验内容与步骤 1.1.边缘检测边缘检测 (1)使用 Roberts 算子的图像分割实验 调入并显示图像图像; 使用 Roberts 算子对图像进行边缘检测处理; Roberts 算子 为一对模板: 指 导 老 师 ( 签 名): -10 01 0-1 10 (a)450方向模板(b)1350方向模板 图图 1 matlab 2010 1 matlab 2010 的的 RobertsRoberts 算子模板算子模板 相应的矩阵为:rh = [0 1;-1 0]; rv = [1 0;0 -1];这里的 rh 为 45 度 Roberts 算子,rv 为 135 度 Roberts 算子。分别显示处理后的 45 度方向和 135 方向的边界检测 结果;用“欧几里德距离”和“街区距离”方式计算梯度的模,并显示检测结果;对于 检测结果进行二值化处理,并显示处理结果。 提示:先做检测结果的直方图,参考直方图中灰度的分布尝试确定阈值;应反复调 节阈值的大小,直至二值化的效果最为满意为止。 (2)使用 Prewitt 算子的图像分割实验 -1-1-1 0 1 0 1 0 1 -10 -10 -10 1 1 1 (a)水平模型(b)垂直模板 图图 2. Prewitt2. Prewitt 算子模板算子模板 使用 Prewitt 算子进行内容(1)中的全部步骤。 (3)使用 Sobel 算子的图像分割实验 使用 Sobel 算子进行内容(1)中的全部步骤。 -1-2-1 0 1 0 2 0 1 -10 -20 -10 1 2 1 (a)水平模型(b)垂直模板 图图 3. Sobel3. Sobel 算子模板算子模板 (4)使用 LoG (拉普拉斯-高斯)算子的图像分割实验 使用 LoG (拉普拉斯-高斯)算子进行内容(1)中的全部步骤。提示 1:处理后可以直 接显示处理结果,无须另外计算梯度的模。提示 2:注意调节噪声的强度以及 LoG (拉普 拉斯-高斯)算子的参数,观察处理结果。 (5) 打印全部结果并进行讨论。 下面是使用 sobel 算子对图像进行分割的 MATLAB 程序 f=imread( ); [gv,t1]=edge(f, sobel , vertical );%使用 edge 函数对图像 f 提取垂直边缘 imshow(gv) [gb,t2]=edge(f, sobel , horizontal );%使用 edge 函数对图像 f 提取水平边缘 figure,imshow(gb) w45=[-2 -1 0;-1 0 1;0 1 2];%指定模版使用 imfilter 计算 45 度方向的边缘 g45=imfilter(double(f),w45, replicate ); T=*max(abs(g45(:))); %设定阈值 g45=g45=T; %进行阈值处理 figure,imshow(g45); 在函数中使用 prewitt 和 roberts 的过程, 类似于使用 sobel 边缘检测器的过程。 三、实验结果及结果分析三、实验结果及结果分析 1.1.边缘检测边缘检测 (1)使用 Roberts 算子的图像分割实验 实验结果: 图图 4. Roberts4. Roberts 算子的图像分割算子的图像分割 实验结果分析: Roberts 算子利用局部差分算子寻找边缘,边缘定位精度比较高,但容易丢失一部 分边缘,同时由于图像没经过平滑处理,因此不具备抑制噪声能力。该算子对具有陡峭 边缘且噪声少的图像效果较好。 (2)使用 Prewitt 算子的图像分割实验 实验结果: 图图 5 .Prewitt5 .Prewitt 算子的图像分割算子的图像分割 实验结果分析: Prewitt 算子先对图像做加权平滑处理,然后再做微分运算,所不同的是平滑部分 的权值有些差异,因此它们对噪声有一定的抑制能力。 (3)使用 Sobel 算子的图像分割实验 实验结果: 图图 6. Sobel6. Sobel 算子的图像分割算子的图像分割 实验结果分析: Sobel 算子和 Prewitt 算子一样,都是先对图像做加权平滑处理,然后再做微分运 算,因此它们对噪声有一定的抑制能力。比较实验结果可以发现,Sobel 算子比 Prewitt 算子在噪声抑制方面略胜一筹,但不能排除检测结果中出现的虚假边缘。虽然这两个算 子边缘定位效果不错,但检测出的边缘容易出现多像素的宽度。 (4)使用 LoG (拉普拉斯-高斯)算子的图像分割实验 实验结果: 图图 7. LoG (7. LoG (拉普拉斯拉普拉斯- -高斯高斯) )算子的图像分割算子的图像分割 实验结果分析: 拉普拉斯算子,它是无方向的二阶微分算子,对图像中的阶跃型边缘定位准确,该 算子对噪声非常敏感,它使噪声成分得到加强。这两个特性使得该算子容易丢失一部分 边缘的方向信息,造成一些不连续的检测边缘。 LoG 算子, 该算子克服了拉普拉斯算子抗噪声性能比较差的缺点, 但是在抑制噪声的 同时也可能将原有的比较尖锐的边缘平滑掉了。 (5) 打印全部结果并进行讨论。 使用 sobel、prewitt 和 roberts 算子对图像进行分割实验。 图图 8.8. 全部结果全部结果 四、实验中遇到问题及解决方法四、实验中遇到问题及解决方法 1. 评价一下 Roberts 算子、 Prewitt 算子、 Sobel 算子对于噪声条件下边界检测的 性能。 答:Roberts 算子采用对角线方向相邻两像素之差近似梯度幅值检测边缘。检测水平 和垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感。 Sobel 算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象 检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。 当对精度要求不是很高时,是一种较为常用的边缘检测方法。 Prewitt 算子利用像素点上下、左右邻点灰度差,在边缘处达到极值检测边缘。 对噪声具有平滑作用,定位精度不够高。 2. 实验中所使用的四种算子所得到的边界有什么异同? 答: 算子的存在就是对这种导数分割原理进行的实例化计算, 是为了在计算过程中直 接使用的一种计算单位。 Roberts 算子:边缘定位准,但是对噪声敏感。适用于边缘明显且噪声较少的图像分 割。 Roberts 边缘检测算子是一种利用局部差分算子寻找边缘的算子,Robert 算子图像处 理后结果边缘不是很平滑。经分析,由于Robert 算子通常会在图像边缘附近的区域内产 生较宽的响应,故采用上述算子检测的