电波衰落与抗衰落方法
树林,山丘,建筑物等建筑物能够阻挡一部分电磁波的射线,从而增加了损 耗。 平滑的地面和水面可以将一部分的信号反射到接收天线上,反射波与入射波 叠加后,有可能相互抵消而产生损耗。 有些时候地面上没有明显的障碍物,此时主要是反射波对直射波产生的影响, 反射是电平产生衰落的主要因素。 地面反射的影响(一)地面反射的影响(一) 无线电波在传输过程中,我们都认为自由空间是均匀的介质。然而实际上,电 磁波传输的实际介质是大气层,而大气是在不断变化的,这种变化对微波的传输会 产生影响的,特别是距地面约 10km 以下的被称为对流层的低层大气层对微波的传 输影响最大。因为对流层集中了大气层质量的 3/4,当地面受太阳照射温度上升时, 地面放出的热量使低层大气受热膨胀,因而造成了大气的密度不均匀,于是产生了 对流运动。在对流层中,大气成分,压强,温度,湿度会随着高度的变化而变化, 会使得微波产生吸收,反射,折射和散射等影响。 大气吸收衰减 我们知道,任何物体都是由带电的粒子组成,这 些粒子都有其固定的电磁谐振频率。当通过这些物质 的电磁频率接近这些谐振频率时,这些物质对微波就 地面反射对电波传播的影响(一) 会产生共振吸收。大气中的分子具有磁偶极子,水蒸气分子具有电偶分子,它们能 从微波中吸收能量,使微波产生衰减。 一般说来,水蒸气的最大吸收峰在 λ=1.3cm 处,氧分子的最大吸收峰则在 λ=0.5cm 处。对于频率较低的电磁波,站与站之间的距离是 50km 以上时,大气吸收 产生的衰减相对于自由空间产生的衰减是微不足道的,可以忽略不计。 雨雾衰减 由于雨雾中的小水滴会使电磁波产生散射,从而造成电磁波的能量损失,产生 散射衰减。一般来讲,10GHz 以下频段雨雾的散射衰耗并不太严重,通常 50km 两 站之间只有几分贝。但若在10GHz 以上,散射衰耗将变得严重,使得站与站之间的 距离受到散射的限制,通常只有几公里。 地面反射的影响(二)地面反射的影响(二) 根据惠更斯-费涅耳原理,在电波的传输过程中,波阵面上的每一点都是一个进 行二次辐射的球面波的波源,这种波源称为二次波源。而空间任一点的辐射场都是 由包围波面的任意封闭曲面上各点的二次波源发出的波在该点相互干涉,叠加的结 果。显然,封闭曲面上各点的二次波源到达接收点的远近不同,这就使得接收点的 信号场强的大小发生变化,为了分析这种变化我们引入费涅耳区的概念。 由图可见 r1+r2-d 就是反射波和直射波的行程差 Δr=nλ/2。显然当 Δr 是半波长的 奇数倍时,反射波和直射波在 R 点的作用是相同的且是最强的,此时的场强得到加 强;而 Δr 为半波长的偶数倍长时,反射波在 R 点的作用是相互抵消的,此时 R 点 的场强最弱。我们就把这些 n 相同的点组成的面称为费涅耳区。费涅尔区的概念对 于信号的接收,检测,判断有重要的意义。 费涅耳区 对流层对电波的影响对流层对电波的影响 我们知道,电磁波在自由空间中的传播速度是 v=c=30 万公里/秒。在真实的 大气中, 电波在自由空间中的传播速度 c 与在大气中的传播速度之比被称为折射率。 折射率受大气压力,温度,湿度的不同而会变化。由于大气的折射作用,实际的电 波不再是按直线传播,而是按曲线传播,根据折射效果的不同可以分成正折射,负 折射和无折射。正折射有可以分成标准折射,临界折射和超折射。 无折射就是大气的折射率不随大气的垂直高度变化而变化。负折射顾名思义就 是由于折射率随高度增加而增加,使得电波的传播方向与地球的弯曲的方向相反。 正折射的意思当然是恰恰相反。 折射的分类 电波衰落之源电波衰落之源 微波在空间传输中将受到大气效应和地面效应的影响,导致接收机接收的电平 随着时间的变化而不断起伏变化,我们把这种现象称为衰落。 衰落的大小与气候条件,站距的长短有关。衰落的时间长短不一,程度不一。 有的衰落持续时间很短,只有几秒钟,称之为快衰落;有的衰落持续时间很长,几 分钟甚至几小时则称之为慢衰落。衰落的出现将使得信号发生畸变。接收电平低于 自由空间传播电平的称之为下衰落。而接收电平高于自由空间的传播的电平时,则 称为上衰落。显然慢衰落和下衰落对微波通信有很大的影响。 从衰落的物理因素来看,可以分成以下几种类型: 吸收衰落。就是大气中的氧分子和水分子能从电磁波吸收能量,这就导致微 波在传播的过程中的能量损耗而产生衰耗。 雨雾引起的散射衰落。这是由于雨雾中的大小水滴能够散射电磁波的能量, 因而造成电磁波的能量损失而产生衰落。 K 型衰落。这是由于多径传输产生的干涉型衰落,它是由直射波和反射波在 到达接收端时,由于行程差,使它们的相位不一样,在叠加时产生的电波衰 落。由于这种衰落与行程差Δr 有关,而Δr 是随大气的折射参数 K 值的变化 而变化的,故称为K 型衰落。这种衰落在水面,湖泊,平滑的地面时显得特 别严重。除了地面的反射以外,大气中有时出现的突变层也能对电磁波产生 反射和散射,也可以造成电波的多径传输,在接收点产生干涉型衰落。 波导型衰落。由于气象的影响,大气层中会形成不均匀的结构,当电磁波通 过这些不均匀层时将产生超折射现象,称为大气波导传播。若微波射线通过 大气波导,而收,发两点在波导层外,如下图所示。则接收点的电场强度除 了有直线波和地面反射波以外,还有“波导层”以外的反射波,形成严重的干 扰型衰落,造成通信的中断。 闪烁衰落。对流层中的大气常发生的体积大小不等,无规则的漩涡运动,这 些称为大气湍流。大气湍流形成的不均匀的块式层状物使介电系数 ε 与周围 的不同。 当微波射线射到不均匀的块式层状物上来时, 将使电波向周围辐射, 形成对流层散射。此时接收点也可以接收到多径传来的这种散射波,它们的 振幅和相位是随机的,这就使接收点的场强的振幅发生变化,形成快衰落。 由于这种衰落是由于多径产生的,因此称之为闪烁衰落。这种衰落持续时间 短,电平变化小,一般不会造成通信的中断。 大气波导传播 抗衰落技术抗衰落技术 分集接收就是采用两种或两种以上的不同的方法接收同一信号,以减少衰减带 来的影响,是一种有效的抗衰落的措施。其基本思想是将接收到的信号分成多路的 独立不相关信号,然后将这些不同能量的信号按不同的规则合并起来。分集依目的 分可以为宏观分集(macroscopic)和微观(microscopic)分集。宏观分集是以克服 长期衰落为目的的。按信号的传输方式可以分为显分集和隐分集两种。显分集指的 是构成明显分集信号的传输方式,多指利用多副天线接收信号的分集。隐分集:分 集作用含在传输信号中的方式,在接受端利用信号处理技术实现分集,它包括交织 编码技术,跳频技术等。隐分集一般用在数字移动通信中。显分集包括以下几种: 利用地形无源反射器抵抗衰落。在微波路由设计中,我们可以利用地形地物 来阻挡反射波,使反射波不能直接到达接收机,从而达到减少衰落的目的。 同时,也可以用无源反射器来改变微波的射线方向,绕开障碍物,达到克服 绕射衰落。 极化分集。通过发射端的天线发射两个极化垂直的信号,接收端分集接收, 这样可以在一定程度上减少多径的影响。不过,极化会产生 3db