统计与概率解答题(原卷版)
统计与概率解答题 一、解答题 1.(2021·广东茂名·高三月考)接种新冠疫苗,可以有效降低感染新冠肺炎的几率,某地区有A,B,C三种新冠疫苗可供居民接种,假设在某个时间段该地区集中接种第一针疫苗,而且这三种疫苗的供应都很充足,为了节省时间和维持良好的接种秩序,接种点设置了号码机,号码机可以随机地产生A,B,C三种号码(产生每个号码的可能性都相等),前去接种第一针疫苗的居民先从号码机上取一张号码,然后去接种与号码相对应的疫苗(例如:取到号码A,就接种A种疫苗,以此类推).若甲,乙,丙,丁四个人各自独立的去接种第一针新冠疫苗. (1)求这四个人中恰有一个人接种A种疫苗的概率; (2)记甲,乙,丙,丁四个人中接种A种疫苗的人数为X,求随机变量X的分布列和数学期望. 2.(2021·梅州市梅江区梅州中学高三月考)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示. 将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; (2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X). 3.(2021·广东高三月考)某市环保部门对该市市民进行垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如下表所示: 组别 男 2 3 5 15 18 12 女 0 5 10 10 7 13 (1)若将问卷得分不低于70分的市民称为“环保关注者”.请完成答题卡中的列联表.根据列联表的独立性检验,能否在犯错误的概率不超过0.05的前提下认为“环保关注者”与性别有关? (2)若将问卷得分不低于80分的市民称为“环保达人”,从我市所有“环保达人”中随机抽取5人,这5人中男性的人数记为X,求X的分布列及数学期望. 附: 0.10 0.05 0.010 0.005 0.001 k 2.706 3.841 6.635 7.879 10.828 . 4.(2021·广东荔湾·广雅中学高三月考)目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏着”,潜伏期高于平均数的患者,称为“长潜伏者”. (1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数; (2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有的把握认为潜伏期长短与患者年龄有关: 短潜伏者 长潜伏者 合计 60岁及以上 _________ _________ 160 60岁以下 60 _________ _______ 合计 _________ _________ 300 (3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是600元,设所需要的试验费用为X,求X的分布列与数学期望. 附表及公式: 0.15 0.10 0.05 0.025 0.010 0.005 0.001 2.072 2.706 3.841 5.024 6.635 7.879 10.828 5.(2021·广东华侨中学高三月考)某校对学生关于开展数学研究性学习的态度进行调查,随机抽调了人,他们数学成绩的平均分(单位:分)的频数分布及对开展数学研究性学习赞成人数如表: 成绩 频数 赞成人数 (1)根据以上统计数据完成下面的列联表:能否有的把握认为学生关于开展数学研究性学习的态度与数学成绩平均分为分分界点有关? 成绩不低于分的人数 成绩低于分的人数 合计 赞成 不赞成 合计 (2)若对数学成绩平均分在和的被调查人中各随机选取人进行追踪调查,求在选中的人中有人不赞成的条件下,赞成开展数学研究性学习的人数的分布列及数学期望. 附参考公式与数据:,. 6.(2021·广州市第一中学高三月考)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关. (1)若小明先回答A类问题,记为小明的累计得分,求的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由. 7.(2021·广东广州·高三月考)为培养学生对传统文化的兴趣,某市从甲,乙两所学校各抽取100名学生参加传统文化知识竞赛,竞赛成绩分为优秀和非优秀两个等级,成绩统计如下表: 优秀人数 非优秀人数 合计 甲校 60 40 100 乙校 70 30 100 合计 130 70 200 (1)甲,乙两所学校竞赛成绩优秀的频率分别是多少? (2)能否有95%的把握认为甲校成绩优秀与乙校成绩优秀有差异? 附: P 0.050 0.010 0.001 k 3.841 6.635 10.828 8.(2021·深圳市第七高级中学高三月考)某观影平台为了解观众对最近上映的某部影片的评价情况(评价结果仅有“好评”、“差评”),从平台所有参与评价的观众中随机抽取216人进行调查,部分数据如下表所示(单位:人): 好评 差评 合计 男性 68 108 女性 60 合计 216 (1)请将列联表补充完整,并判断是否有99%的把握认为“对该部影片的评价与性别有关”? (2)若将频率视为概率,从观影平台的所有给出“好评”的观众中随机抽取3人,用随机变量X表示被抽到的男性观众的人数,求X的分布列; (3)在抽出的216人中,从给出“好评”的观众中利用分层抽样的方法抽取10人,从给出“差评”的观众中抽取人.现从这人中,随机抽出2人,用随机变量Y表示被抽到的给出“好评”的女性观众的人数.若随机变量Y的数学期望不小于1,求m的最大值. 参考公式:,其中.