专题18保险问题(解析版)-概率统计题型全归纳
专题18 保险问题 例1. 购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为。 (Ⅰ)求一投保人在一年度内出险的概率; (Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。 【解析】各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为, 则 (Ⅰ)记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当, 2分 , 又,故 (Ⅱ)该险种总收入为元,支出是赔偿金总额与成本的和。 支出, 盈利, 盈利的期望为, 由知,, 。 (元)。 故每位投保人应交纳的最低保费为15元 例2. 某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为、、三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率). (Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限; (Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润. 【解析】(Ⅰ)设工种的每份保单保费为元,设保险公司每单的收益为随机变量,则的分布列为 保险公司期望收益为 根据规则 解得元, 设工种的每份保单保费为元,赔付金期望值为元,则保险公司期望利润为元,根据规则,解得元, 设工种的每份保单保费为元,赔付金期望值为元,则保险公司期望利润为元,根据规则,解得元. (Ⅱ)购买类产品的份数为份, 购买类产品的份数为份, 购买类产品的份数为份, 企业支付的总保费为 元, 保险公司在这宗交易中的期望利润为元. 例3.某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为、、三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率). 对于、、三类工种职工每人每年保费分别为元,元,元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元. (Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费、所要满足的条件; (Ⅱ)现有如下两个方案供企业选择; 方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工; 方案2:企业于保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付. 若企业选择翻翻2的支出(不包括职工支出)低于选择方案1的支出期望,求保费、所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.) 【解析】(Ⅰ)设工种,,职工的每份保单保险公司的效益为随机变量,,,则,,的分布列为 保险公司期望收益, , . 根据要求 . 解得, 所以每张保单的保费需要满足元. (Ⅱ)若该企业不与保险公司合作,则安全支出,即赔偿金的期望值为 . 若该企业与保险公司合作,则安全支出,即保费为 . 解得, 结果与(Ⅰ)不冲突,所以企业有可能与保险公司合作. 例4. 某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只需要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为、、三类工种,从事这三类工种的人数分别为12000、6000、2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率): 工种类别 A B C 赔付频率 已知、、三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此业务的过程中固定支出每年10万元. (1)求保险公司在该业务所获利润的期望值; (2)现有如下两个方案供企业选择: 方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给出意外的职工,企业开展这项工作的固定支出为每年12万元; 方案2:企业与保险公司合作,企业负责职工保费的,职工个人负责,出险后赔偿金由保险公司赔付,企业无额外专项开支.根据企业成本差异给出选择合适方案的建议. 【解析】(Ⅰ)设工种A、B、C职工的每份保单保险公司的收益为随机变量X、Y、Z,则X、Y、Z的分布列为 X 25 P Y 25 P Z 40 P 保险公司的期望收益为 ; ; ; 保险公司的利润的期望值为, 保险公司在该业务所获利润的期望值为9万元. (Ⅱ)方案1:企业不与保险公司合作,则企业每年安全支出与固定开支共为: , 方案2:企业与保险公司合作,则企业支出保险金额为: , ,故建议企业选择方案2. 例5. 按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情況如表: 某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格: 以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题: (1)某家庭有一辆该品牌车且车龄刚满三年,记为该车在第四年续保时的费用,求的分布列; (2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车. ①若该销售商购进三辆车(车龄已满三年)该品牌二手车,求这三辆车中至少有2辆事故车的概率; ②假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元.若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求其获得利润的期望值. 【解析】(1)由题意可知的可能取值为. 由统计数据可知: ,,,, ,. 所以的分布列为: (2)①由统计数据