高考数学必修四向量知识点
下载后可任意编辑 高考数学必修四向量知识点 高考数学必修四向量知识点 考点一:向量的概念、向量的基本定理 了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面对量的基本定理。 注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。 考点二:向量的运算 向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;掌握向量的数量积的运算,体会平面对量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面对量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面对量的垂直关系。 命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。 考点三:定比分点 掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。 重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,常常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,间或也以难度略高的题目。 考点四:向量与三角函数的综合问题 向量与三角函数的综合问题是高考常常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。 命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。 考点五:平面对量与函数问题的交汇 平面对量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。 命题多以解答题为主,属中档题。 考点六:平面对量在平面几何中的应用 向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,给予几何图形有关点与平面对量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决. 命题多以解答题为主,属中等偏难的试题。 高二数学向量知识点总结(二) 平面对量 戴氏航天学校老师总结加法与减法的代数运算: (1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律); 两个向量共线的充要条件: (1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=. (2)若=(),b=()则‖b. 平面对量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得=e1+e2 高考数学必修四学习方法 养成良好的课前和课后学习习惯:在当前高中数学学习中,培育正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学讨论中,建议采纳两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。 高考数学必修四学习技巧 养成良好的学习数学习惯 多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把老师所传授的知识翻译成为自己的特别语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 及时了解、掌握常用的数学思想和方法 中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特别,有限与无限,抽象与概括等。