高一数学直线方程教学计划范文
下载后可任意编辑 高一数学直线方程教学计划范文 一、内容及其解析 1、内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程讨论直线。 2、解析:直线方程属于解析几何的基础知识,是讨论解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识讨论几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。 二、目标及其解析 1、目标 掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。 2、解析 ①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。 ②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。 ③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。 ④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特别与一般思想。 ⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。 三、教学问题诊断分析 1、学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对讨论直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。 2、学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算讨论几何图形性质。 3、由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深化和反复渗透,学生会逐步理解的。 四、教法与学法分析 1、教法分析 新课标指出,学生是教学的主体。老师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采纳启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培育学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。 2、学法分析 改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探究,动手实践,合作沟通,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在老师引导下的再制造的过程。为学生形成积极主动的、多样的学习方式制造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探究的习惯。 通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培育学生发现问题、讨论问题和分析解决问题的能力。 五、教学过程设计 问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化? [设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。 问题2:建立直线方程的实质是什么? [设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。 引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件? [设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。 问题2.1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系? (过与两点的直线的斜率为) [设计意图]让学生寻找确定直线的条件,体会动中找静。 问题2.2如何将上述条件用代数形式表示出来? [设计意图]让学生理解和体会用坐标表示确定直线的条件。 用代数式表示出来就是,即。 问题2.3为什么说是满足条件的直线方程? [设计意图]让学生初步感受直线与直线方程的关系。 此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。 另外以方程的解为坐标的点也在直线上。 所以我们得到经过点,斜率为的直线方程是。 问题2.4:能否说方程是经过,斜率为的直线方程? [设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。 问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程? [设计意图]由特别到一般的学习思路,培育学生的是归纳概括能力。 问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法? [设计意图]引导学生掌握解析几何取点的方法。 引导学生求出直线的点斜式方程 注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。 问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗? [设计意图]让学生初步感受解析几何求曲线方程的步骤。 ①设点———用表示曲线上任一点的坐标; ②寻找条件————写出适合条件; ③列出方程————用坐标表示条件,列出方程 ④化简———化方程为最简形式; ⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。 例1分别求经过点,且满足下列条件的直线的方程,并画出直线。 ⑴倾斜角 ⑵斜率