高一数学教案例文
下载后可任意编辑 高一数学教案例文 高一数学教案最新例文1 教学目标 1.使学生掌握指数函数的概念,图象和性质. (1)能根据定义推断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域. (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质. (3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如 的图象. 2.通过对指数函数的概念图象性质的学习,培育学生观察,分析归纳的能力,进一步体会数形结合的思想方法. 3.通过对指数函数的讨论,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题. 教学建议 教材分析 (1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行讨论的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点讨论. (2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数 在 和 时,函数值变化情况的区分. (3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论讨论是学生面临的重要问题,所以从指数函数的讨论过程中得到相应的结论固然重要,但更为重要的是要了解系统讨论一类函数的方法,所以在教学中要特别让学生去体会讨论的方法,以便能将其迁移到其他函数的讨论. 教法建议 (1)关于指数函数的定义根据课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 等都不是指数函数. (2)对底数 的限制条件的理解与认识也是认识指数函数的重要内容.假如有可能尽量让学生自己去讨论对底数,指数都有什么限制要求,老师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来. 关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避开描点前的盲目列表计算,也应避开盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象. 高一数学教案最新例文2 教学目标 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去讨论认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培育学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 教学建议 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数讨论未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的讨论为主,老师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参加意识又教给他们思考问题的方法,猎取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣. 高一数学教案最新例文3 教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法 (2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示 一些简单的集合 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、讨论问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础 把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑 本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子 这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念 集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明 教学过程: 一、复习引入: 1.简介数集的进展,复习公约数和最小公倍数,质数与和数; 2.教材中的章头引言; 3.集合论的创