高中数学必修一知识点总结(全)
1第一章 集合与函数概念课时一:集合有关概念1. 集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。2. 一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。3. 集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。例:由 HAPPY 的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。1)列举法:将集合中的元素一一列举出来 {a,b,c……}2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。{xR| x-3>2} ,{x| x-3>2}①语言描述法:例:{不是直角三角形的三角形}②Venn 图:画出一条封闭的曲线,曲线里面表示集合。4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合 例:{x|x 2=-5}5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:aA(2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集 Z 有理数集 Q 实数集 R2课时二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合 A 的任何一个元素都是集合 B 的元素,我们说这两个集合有包含关系,称集合 A 是集合 B 的子集。记作: (或 B A)A注意: 有两种可能(1)A 是 B 的一部分,;B(2)A 与 B 是同一集合。反之: 集合 A 不包含于集合 B,或集合 B 不包含集合 A,记作 A B 或 B A2.“相等”关系:A=B (5≥5,且 5≤5,则 5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。AA②真子集:如果 AB,且 A B 那就说集合 A 是集合 B 的真子集,记作 A B(或 BA)或若集合 AB,存在 x B 且 x A,则称集合 A 是集合 B 的真子集。③如果 A B, BC ,那么 AC④ 如果 AB 同时 B A 那么 A=B3. 不含任何元素的集合叫做空集,记为 Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 有 n 个元素的集合,含有 2n个子集,2 n-1个真子集课时三、集合的运算运算类型 交 集 并 集 补 集定 义 由所有属于 A 且属于 B的元素所组成的集合,叫做 A,B 的交集.记作A B(读作‘A 交 B’)I,即 A B={x|x A,且 x B}.由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做 A,B 的并集.记作:A B(读作U‘A 并 B’),即 A B ={x|x A,或 x B}).全集:一般,若一个集合汉语我们所研究问题中这几道的所有元素,我们就称这个集合为全集,记作:U设 S 是一个集合,A 是 S 的一个子集,由 S 中所有不属于 A 的元素组成的集合,叫做 S 中子集 A 的补集(或余集)记作,CSCSA= },|{x且韦恩图示 A B图1A B图2性 质 A ∩ A=A A ∩Φ=ΦA ∩B=B AIA ∩B A A ∩B BAUA=A AUΦ=AAUB=BUA AUB AAUB B(CuA)∩(CuB)= Cu(AUB)(CuA) U (CuB)= Cu(A∩B)AU(CuA)=UA∩(CuA)=Φ.SA3课时四:函数的有关概念1. 函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数.记作: y=f(x),x∈A.(1)其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;(2)与 x 的值相对应的 y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2. 函数的三要素:定义域、值域、对应法则3. 函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x, y)的集合 C,叫做函数 y=f(x),(x ∈A)的图象.C 上每一点的坐标 (x, y)均满足函数关系 y=f(x),反过来,以满足 y=f(x)的每一组有序实数对 x、 y 为坐标的点 (x, y),均在 C 上 . (2) 画法A、描点法: B、图象变换法:平移变换;伸缩变换;对称变换。(3)函数图像变换的特点:1)函数 y=f(x) 关于 X 轴对称 y=-f(x)2)函数 y=f(x) 关于 Y 轴对称 y=f(-x)3)函数 y=f(x) 关于原点对称 y=-f(-x)课时五:函数的解析表达式,及函数定义域的求法1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有: 1)代入法:2)待定系数法:43)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数 x 的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于 1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的 x 的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义.3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)4、区间的概念:(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示课时六:1.值域 : 先考虑其定义域(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域; (2)反表示法:针对分式的类型,把 Y 关于 X 的函数关系式化成 X 关于 Y的函数关系式,由 X 的范围类似求 Y 的范围。(3