解决问题的策略--转化
解决问题的策略转化 教材简析教材简析 本节课是国标苏教版六年级下册解决问题的策略一单元中第一课时,内容是第 71-72 例一及练习十四的 1-4 题.本单元教学转化的策略。转化是解决问题时经 常采用的方法, 能把较复杂的问题变成较简单的问题,把新颖的问题变成已经解 决的问题。 转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点 有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益 于思维的发展。 通过例 1 的教学让学生联系实际感悟转化的含义,体会无论在过 去还是现在, 转化都是解决问题的有效方法。本单元的教学不以学生能够解决教 材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。具有初步的 转化意识和能力,对以后的学习与解决问题将会产生十分积极的作用。 教学目标教学目标 1.教材让学生在直观的情境中想到转化, 并应用图形的平移和旋转知识进行图形 的等积,等周长的变形. 2.在解决实际问题过程中体会转化的含义和应用的手段, 感受转化在解决这个问 题时的价值。 3.进一步积累解决问题的经验 ,增强解决问题的“转化“意识,提高学好数学的信 心. 教学重点教学重点 感受“转化”策略的价值,会用“转化”的策略解决问题。 教学难点教学难点 会用“转化”的策略解决问题。 教学过程预设教学过程预设 一、复习导课 1、出示多组暗藏“转化”策略且学生曾经学习过的问题。 (1)16-2.54-7.46 (2)2/35/18 (3)怎样推导平行四边形面积的计算方法 (4)怎样推导三角形面积的计算方法 2、学生口答,老师适时展示课件。 3、提问刚才我们完成的问题,有关于数字的,也有关于图形的。你觉得它们 之间有什么地方是相同的 提示 (1)师比如 16-2.54-7.46,为什么要 16-(2.547.46) 生简单了。 师是啊,原来比较复杂难算的连减题,我们把它转化成了减去两个数的 和,这样做起来就简单多了。 (板书复杂→简单) (2)2/35/18 师这又是怎样的呢 生原来异分母因为分数单位不同,不能计算,把它们转化成了同分母。 (3)图形的转化 师原来我们不知道平行四边形和三角形的面积怎么计算 4、小结。 师刚才我们复习的这些问题,它们有一个共同的特点转化。 (板书) 师转化可以让我们复杂的变的简单,没学过的,也就是未知的变成已知。 (板书未知→已知) 〈设计意图在学生的脑海中早就存在“转化”的思想,只不过他们还不知道 “转化” 这个词。 或者说还没有意识到这是一个策略,还不会有意识的去运用这 个策略。 设计这部分教学, 就是为了告诉学生, 我们一直就在用一个策略解决问 题。这个策略就是转化。虽然是新的策略需要学习,但我们一直就用了,给 了学生很大的信心。接下来就需要在解决问题的过程中体会它、凝练它、 运用它。 〉 二、教学例 1。 1、出示例 1。 师 刚才我们已经知道了自己一直拥有一个解决问题的本领转化。下面就让 我们一展身手。 师这两个图形你们学过吗 我们能用已有的面积公式直接计算它们的面积吗 它们的面积相等吗有什么办法来比较它们面积的大小呢 1同桌讨论。 2动手操作。 3交流自己所用的转化方法 , 重点让学生说一说如何将两个图形转化成已学过 面积计算公式的图形。然后课件演示。 师你是怎样进行转化的 第一幅图先割下上面的半圆,再将这个半圆向下平移 5 格,就转化成 了 54 的长方形了; 第二幅图 先把下半部分凸出来的两个半圆割下来, 再绕直径的上端旋转 180 度,补到图形上半部分凹进去的地方,于是这 个图形也转化成 54 的长方形 师转化后的两个图形的面积什么关系都等于 20 格 师你怎么想到把图形分割后重新拼合进行转化的原图复杂,转化后的图 形容易计算面积, 而且转化前后图形的面积不变指板书 复杂→简单 4总结评价。 师小结刚才我们为了比较两个图形的面积,先把它们转化成长方形,这样 比较起来就简单的多了。看来“转化”这个策略还真不错。如果以 后我们再遇到复杂的问题,同学就要想到什么(转化) 。想不想继 续挑战 〈设计意图 转化的目的是为了把困难的问题化为容易的问题,或者把复杂的问 题化为简单的问题, 利用动画使转化的过程更加直观,更加便于理解, 学生动手 操作亲身体验了转化的好处〉 三、分层练习。 师下面我们就用转化的策略解决一些题目。 第一次空间与图形的领域 1、练一练 1(课本练习十四第二题)用分数表示图中的涂色部分 〈设计意图 通过第一个图形让学生感受到原来的图形的涂色部分无法直接用某 一个分数, 而通过课件将图形换色、 移动、 旋转, 发现图中的特殊关系进行转化, 可以发现涂色部分是整个圆的二分之一;第二个图形进行巩固刚才的转化意识。 第三个图形中的涂色部分是难点,受思维定势的影响, 学生误认为可以旋转得到 9/16,教师要把此作为促使学生反思的好材料,利用课件进行即时分割、平移、 转化, 特别是刷新和局部放大、以及保存痕迹的独特功能,很好地帮助学生思考、 辨析错在何处, 在错误辨析中加深对转化策略运用时要保证“变中不变” 的本质 的理解。 〉 2、练一练 2 (课本练一练)先出示后,让学生计算左边长方形的周长,右边 这个图形的周长怎样计算呢指名指周长 发现边较多,转化成什么图形可以使计算简便怎样转化指名操作 刚才我们解决这个问题的策略是什么 〈设计意图 教师利用课件即时变色, 突出周长的概念; 同时在保留平移前的痕 迹的同时演示平移的过程,这样避免了由于过程发生变化,原先的图形脑子里不 储存,缺乏对比说服力不强的弊端〉 3、练一练 3(练习十四 第三题 ) 〈设计意图在第2 张图形中, 教师利用课件即时变色后再移动,突出周长的概念; 第3 张图形中, 让学生在课件上实际操作图形,并利用课件回溯和重现操作过程 和细节的功能, 师生一起对学生的操作过程动态和细节在屏幕上评讲、纠正, 一 目了然, 提高学生的学习兴趣以及参与和交互的积极性;第四张图形的难点是拼 合后的周长概念,教师利用课件即时变色,可以方便地解决。〉 第二次数与代数的领域 4、试一试1/21/41/81/16 (1)学生独立完成。 (2)交流讨论通分; 1-1/21/2-1/41/4-1/81/8-1/16; 化小数; (3)出示图。 看右边正方形图。观察图可以把这一算式转化成什么算式来计算图中那 一部分表示这几个数的和空白部分是大正方形的几分之几能不能根据空白 部分求出涂色部分 (4)延伸再加上 1/32、1/64,学生直接说结果。 师本来算加法,比较繁;转化后,算减法,比较简单。所有的分数加法 都能这样转化吗这些加数有什么特征 (5)创造同学们,你能创造出一个像这样的算式吗 〈设计意图学生的方法有很多,但肯定都会体现出“转化”这一思想。老师要 做的就是深刻体会转化的同时,适当的优化方法。 利用数转化为图形来解决问题 对学生来说是史无前例的,因此即使