初三数学校本课程教案设计 中外著名数学家
标准 校本课程4 中外著名数学家 1、韦达(1540-1603),法国数学家。 年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数理论研究的重大进步。韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”。1579年,韦达出版《应用于三角形的数学定律》 2、帕斯卡(1623──1662年)是法国数学家、物理学家和哲学家. 16岁的时候就发现了著名的“帕斯卡定理”,即“圆锥曲线接六边形的三组对边的交点共线”,对射影几何学作出了重要贡献.19岁时,发明了一种能做加法和减法运算的计算器,这是世界上第一台机械式的计算机.他对连续不可分量、微分三角形、面积和重心等问题的深入研究,对微积分学的建立起到了积极的作用.帕斯卡对数学的最大贡献是创立概率论,为了解决概率论和组合分析方面的问题,帕斯卡广泛应用了算术三角形(即二项式定理系数表,西方称帕斯卡三角,我国称贾宪三角或辉三角),并深入研究了二项展开式的系数规律以及这个三角形的构造及其许多有趣的性质。帕斯卡在物理学方面提出了重要的“帕斯卡定律”。他所著《思想录》和《致乡人书》对法国散文的发展产生了重要的影响。 3、在数学史上,很难再找到如此年轻而如此有创见的数学家。他就是出生在法国的伽罗华(1811——1832) 文案. 标准 伽罗华才华横溢,思维敏捷,十七岁时就写了一篇关于《五次方程代数解法》这个世界数学难题的论文,最先提出了近代数学的一个基本概念——“群”。可是这篇论文被法国科学院一位目空一切的数学家丢失了。次年,他又写了几篇数学论文送交法国科学院,不料主审人因车祸去世,论文也不知所踪。再过两年,他被近把自己的研究再次写成简述,寄往法国科学,他去信尖锐地提醒权威们:“第一,不要因为我叫伽罗化,第二,不要因为我是大学生,”而“预先决定我对这个问题无能为力。”在这封咄咄逼人的书信面前,有两位数学家不得不宣读了他的研究简述,但随即又以“完全不能理解”予以否定,其实,他们并没有读懂伽罗华的论文。 伽罗华二十一岁那年死于决斗。临死前他对守在旁边的弟弟说:“不要忘了我,因为命运不让我活到祖国知道我的名字的时候。”在决斗前夜,他给友人写了著名的“科学遗嘱”,其中充满自信地说:“我一行中不只一次敢于提出我没有把握的命题,我期待着将来总会有人认识到:解开这个谜对雅可比和高斯是有好处的。” 他的预言成为现实,那是在三十八年他的六十页厚的论文终于出版的时候,从此,他被认为“群论”的奠基 人。 4、 徽 徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 《九章算术》约成书于东汉之初,共有246个问题的解法.在 文案. 标准 许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了割圆术,即将圆周用接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.徽在割圆术中提出的割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣,这可视为中国古代极限观念的佳作. 《海岛算经》一书中, 徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目. 徽思想敏捷,方法灵活,既提倡推理又主直观.他是我国最早明确主用逻辑推理的方式来论证数学命题的人. 徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富. 5、贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 文案. 标准 他的主要贡献是创造了贾宪三角和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 6、秦九韶 秦九韶(约1202--1261),字道古,安岳人。先后在,,,等地做官,1261年左右被贬至,(今梅县),不久死于任所。他与冶,辉,朱世杰并称宋元数学四大家。早年在“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 7、冶 冶(1192----1279),原名治,号敬斋,金代真定栾城人,曾任钧州(今禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。冶还有另一步数学著作《益古演段》 文案. 标准 (1259)也是讲解天元术的。 8、朱世杰 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次插法). 9、祖冲之 祖冲之(公元429~500年)祖籍是现今省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。