蚂蚁文库
换一换
首页 蚂蚁文库 > 资源分类 > DOCX文档下载
 

数学建模课后习题作业

  • 资源ID:55779184       资源大小:555.20KB        全文页数:15页
  • 资源格式: DOCX        下载权限:游客/注册会员    下载费用:15积分 【人民币15元】
快捷注册下载 游客一键下载
会员登录下载
三方登录下载: 微信快捷登录 QQ登录  
下载资源需要15积分 【人民币15元】
邮箱/手机:
温馨提示:
支付成功后,系统会自动生成账号(用户名和密码都是您填写的邮箱或者手机号),方便下次登录下载和查询订单;
支付方式: 微信支付    支付宝   
验证码:   换一换

 
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

数学建模课后习题作业

精品文档---下载后可任意编辑 【陈文滨】 1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何 【模型假设】 (1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形. (2)地面高度是连续变化的,沿任何方向都不会出现间断 没有像台阶那样的情况,即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件. (3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,假如出现深沟或凸峰即使是连续变化的,此时三只脚是无法同时着地的。 【模型建立】 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来. 首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形. 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题. 如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置. 其次,把椅脚是否着地用数学形式表示出来. 我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数. 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设3可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。 数学模型已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f(θ)gθ=0,证明存在θ0∈[0,π],使得f(θ0)=g(θ0)=0成立。 【模型求解】 假如f(0)=g(0)=0,那么结论成立。 假如f(0)与g(0)不同时为零,不妨设f(0)>0,g(0)=0。这时,将长方形ABCD绕点O逆时针旋转角度π后,点A,B分别与C,D互换,但长方形ABCD在地面上所处的位置不变,由此可知,f(π)=g(0),g(π)=f(0).而由f(0)>0,g(0)=0,得g(π)>0, f(π)=0。 令h(θ)=fθ-g(θ),由fθ和gθ的连续性知hθ也是连续函数。 又h(0)=f0-g(0)>0,h(π)=fπ-g(π)<0,,根据连续函数介值定理,必存在θ0∈(0,π)使得h(θ0)=0,即f(θ0)=g(θ0) ; 又因为f(θ0)g(θ0)=0,所以f(θ0)=g(θ0)=0。于是,椅子的四只脚同时着地,放稳了。 【模型讨论】 用函数的观点来解决问题,引入合适的函数是关键.本模型的巧妙之处就在于用变量θ表示椅子的位置,用θ的两个函数表示椅子四只脚与地面的竖直距离.运用这个模型,不但可以确信椅子能在不平的地面上放稳,而且可以指导我们如何通过旋转将地面上放不稳的椅子放稳. 2、人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。问人、狗、鸡、米怎样过河 【模型假设】 人带着猫、鸡、米过河,从左岸到右岸,船除了需要人划之外,只能载猫、鸡、米三者之一,人不在场时猫要吃鸡、鸡要吃米。试设计一个安全过河方案,使渡河次数尽量地少。 【符号说明】 代表人的状态,人在该左岸或船上取值为1,否则为0; 代表猫的状态,猫在该左岸或船上取值为1,否则为0; 代表鸡的状态,鸡在该左岸或船上取值为1,否则为0; 代表米的状态,米在该左岸或船上取值为1,否则为0; 状态向量,代表时刻K左岸的状态; 决策向量,代表时刻K船上的状态; 【模型建立】 限制条件 初始状态 目标确定有效状态集合,使得在有限步内左岸状态由 【模型求解】 根据乘法原理,四维向量共有种情况,根据限制条件可以排除三种情况,其余13种情况可以归入两个集合进行匹配,易知可行决策集仅有五个元素,状态集有8个元素,将其进行匹配,共有两种运送方案 方案一人先带鸡过河,然后人再回左岸,把米带过右岸,人再把鸡运回左岸,人再把猫带过右岸,最后人回来把鸡带去右岸(状态见表1); 方案二人先带鸡过河,然后人再回左岸,把猫带过右岸,人再把鸡运回左岸,人再把米带过右岸,最后人回来把鸡带去右岸(状态见表2)。 表1方案一的状态与决策 时刻 左岸状态 船上 (1,1,1,1) (0,0,0,0) (0,1,0,1) (1,0,1,0) (1,1,0,1) (1,0,0,0) (0,1,0,0) (1,0,0,1) (1,1,1,0) (1,0,1,0) (0,0,1,0) (1,1,0,0) (1,0,1,0) (1,0,0,0) (0,0,0,0) (1,0,1,0) 表2方案二的状态与决策 时刻 左岸状态 船上 (1,1,1,1) (0,0,0,0) (0,1,0,1) (1,0,1,0) (1,1,0,1) (1,0,0,0) (0,0,0,1) (1,1,0,0) (1,0,1,1) (1,0,1,0) (0,0,1,0) (1,0,0,1) (1,0,1,0) (1,0,0,0) (0,0,0,0) (1,0,1,0) 3、 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。这就是说,报童售出一份报纸赚,退回一份报纸赔。报童假如每天购进的报纸太少,不够卖的,会少赚钱;假如购进太多,卖不完,将要赔钱。请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。 【符号说明】 报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。设每日的订购量为n,假如订购的多了,报纸剩下会造成浪费,甚至陪钱。订的少了,报纸不够卖,又会少赚钱。为了获得最大效益,现在要确定最优订购量n。 n的意义。n是每天购进报纸的数量,确定n一方面可以使报童长期

注意事项

本文(数学建模课后习题作业)为本站会员(suijiazhuang)主动上传,蚂蚁文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蚂蚁文库(发送邮件至2303240369@qq.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们


网站客服QQ:2303240369

copyright@ 2017-2027 mayiwenku.com 

网站版权所有  智慧蚂蚁网络

经营许可证号:ICP备2024020385号



收起
展开